Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
A B C D E
Ta có: ^ACD=^ACB - ^BCD (1). Do tam giác ABC vuông cân => ^ABC=^ACB=450
Thay ^ACB=450 và ^BCD=150 vào (1): ^ACD=450-150=300.
Xét tam giác DAC: ^DAC=900 => ^ADC+^ACD=900 => ^ADC=900-^ACD=900-300=600 => ^ADC=600.
Tam giác ABC vuông cân tại A => AB=AC.
Xét tam giác EAB và tam giác DAC có:
AE=AD
^EAB=^DAC=900 => Tam giác EAB=Tam giác DAC (c.g.c)
AB=AC
=> ^AEB=^ADC (2 góc tương ứng). Mà ^ADC=600 => ^AEB=600.
Xét tam giác EAD: AD=AE, ^EAD=900 => Tam giác EAD vuông cân tại A => ^ADE=^AED=450.
Lại có: ^AED+^BED=^AEB => ^BED=^AEB-^AED=600-450=150.
Vậy ^BED=150.