Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
Xét tam giác BED và tam giác CKD ta có:
DE=DK
BD=CD( D là trung điểm của BC)
BDE=CDK(đối đỉnh)
Do đó tam giác BED=tam giác CKD(c-g-c)
Vậy góc BED=góc CKD.Mà DK vuông góc với AC nên góc DKA =góc DKC=90 độ
=>BED =90 độ
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
A B C D E
Ta có: ^ACD=^ACB - ^BCD (1). Do tam giác ABC vuông cân => ^ABC=^ACB=450
Thay ^ACB=450 và ^BCD=150 vào (1): ^ACD=450-150=300.
Xét tam giác DAC: ^DAC=900 => ^ADC+^ACD=900 => ^ADC=900-^ACD=900-300=600 => ^ADC=600.
Tam giác ABC vuông cân tại A => AB=AC.
Xét tam giác EAB và tam giác DAC có:
AE=AD
^EAB=^DAC=900 => Tam giác EAB=Tam giác DAC (c.g.c)
AB=AC
=> ^AEB=^ADC (2 góc tương ứng). Mà ^ADC=600 => ^AEB=600.
Xét tam giác EAD: AD=AE, ^EAD=900 => Tam giác EAD vuông cân tại A => ^ADE=^AED=450.
Lại có: ^AED+^BED=^AEB => ^BED=^AEB-^AED=600-450=150.
Vậy ^BED=150.