K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

A B C D M

a) Xét tam giác DAB và tam giác DAC có :

ABD = ACD ( = 900 )

AD chung

AB = AC ( gt )

=> tam giác DAB = tam giác DAC ( ch - cgv )

=> đpcm

b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )

=> BD = CD ( 2 cạnh tương ứng )

=> tam giác BDC cân tại D ( đpcm )

c) Ta có :

+) AB = AC => A thuộc đường trung trực của BC (1)

+) BM = MC => M thuộc đường trung trực của BC (2)

+) BD = CD => D thuộc đường trung trực của BC (3)

Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )

23 tháng 11 2018

*Link ảnh(nếu như olm không hiện):Ảnh - by tth

Ảnh (nếu olm ko hiện)

a) Xét tam giác DAB và tam giác DAC có:

AB = AC (gt)

AD (cạnh chung - cũng là cạnh huyền)

\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)

Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)

Do đó \(\Delta DBC\) cân (tại D)

c) Bạn Trần Phương  đã làm =))

7 tháng 2 2017

Câu a chứng minh bằng nhau à?

28 tháng 3 2019

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:

           \(\widehat{B}\)=\(\widehat{C}\)(gt)

           BM=CM(trung tuyến AM)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)

b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)

Gọi O là giao của AM và EF

xét tam giác OAE và tam giác OAF có:

              AO cạnh chung

             \(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)

     vì AB=AC mà EB=FC nên AE=AF

\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)

\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)

từ (1) và (2) suy ra AM là đg trung trực của EF

c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)

ta có tam giác BAM=tam giác CAM(c.g.c)

=> AD là p/g của góc BAC(2)

từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng

                

28 tháng 3 2019

a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C

Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F

BM=CM (BM là trung tuyến)

Góc B=Góc C

=> Tam giác BEM=Tam giác CFM(ch-gn)

b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC

Mà AB=AC=> AE=AF(2)

Từ 1 và 2 => AM là trung trực của EF

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

12 tháng 2 2020

Bài 1:

A B C M D - -

a) Xét △DAB và △DAC có:

ABD = ACD (= 90o)

AD: chung

AB = AC (△ABC cân)

=> △DAB = △DAC (ch-cgv)

b) Vì △DAB = △DAC 

=> DB = DC (2 cạnh tương ứng)

=> △DBC cân

c) Xét △AMB và △AMC có:

AB = AC (△ABC cân)

AM: chung

MB = MC (M: trung điểm BC)

=> △AMB = △AMC (c.c.c)

=> MAB = MAC (2 góc tương ứng)

=> AM là phân giác BAC (1)

Vì △DAB = △DAC

=> DAB = DAC (2 góc tương ứng)

=> AD là phân giác BAC (2)

Từ (1) và (2)

=> A, M, D thẳng hàng

12 tháng 2 2020

Bạn tự vẽ hình nhé

Bài 1. 

a) Xét tam giác MAB và tam giác MAC có:

    AB = AC (tam giác ABC cân tại A )

   AM là cạnh chung

   MB = MC (M là trung điểm của BC )

=> tam giác MAB = tam giác MAC ( c- c - c)

=> góc MAB = góc MAC ( 2 góc tương ứng ) (1)

Xét 2 tam giác vuông: tam giác DAB và tam giác DAC có:

           AB = AC  ( tam giác ABC cân tại A )

           góc MAB = góc MAC (c/m ở 1)

      => Tam giác DAB = tam giác DAC ( CH - GN)

b) Ta có tam giác DAB = tam giác DAC ( c/m ở câu a)

                        => DB = DC ( 2 cạnh tương ứng )

=> Tam giác DBC cân tại D

còn câu c chờ mình 1 chút nhé