Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bc sao mà bằng a, ac làm sao mà bằng b ... 1 cái là cạnh 1 cái là góc mà
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Xin lỗi mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn đc xin lỗi NGUYỄN ANH TÚ
Trên BC lấy E sao cho BD=BE,nối E với D,E với A
Ta có:\(\widehat{DBE}=\widehat{DBA}+\widehat{ABC}=\frac{180^0-140^0}{2}+\frac{180^0-100^0}{2}=20^0+40^0=60^0\)
Mà tam giác DBE có BD=BE nên tam giác DBE đều
Suy ra BD=DE=BE
Mà BD=AD nên BD=AD=DE=BE suy ra tam giác ADE cân tại D
\(\Rightarrow\widehat{DEA}=\widehat{DAE}=\frac{\left(180^0-\left(140^0-60^0\right)\right)}{2}=50^0\)
\(\Rightarrow\widehat{CEA}=180^0-\widehat{AED}-\widehat{DEB}=180^0-50^0-60^0=70^0\)
\(\Rightarrow\widehat{CAE}=180^0-\widehat{CEA}-\widehat{ACE}=180^0-70^0-40^0=70^0=\widehat{CEA}\)
Suy ra tam giác ACE cân tại C suy ra CA=CE.
Khi đó ta có: \(BC=BE+EC=BD+AC\Rightarrow a=BD+b\Rightarrow BD=a-b\)
Chu vi tam giác ADB là AD+BD+AB=2.BD+AC=2.(a-b)+b=2a-2b+b=2a-b
Vậy chu vi tam giác ADB là 2a-b
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.