Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD < 900 => sđ cung DF < 1800 => ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE).
Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.
2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.
3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân)
=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .
4. Xét hai tam giác BDM và CBF Ta có Ð DBM = ÐBCF ( hai góc đáy của tam giác cân).
ÐBDM = ÐBFD (nội tiếp cùng chắn cung DI); Ð CBF = ÐBFD (vì so le) => ÐBDM = ÐCBF .
=> DBDM ~DCBF =>
a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)
Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)
\(\Rightarrow ODAF\) là tứ giác nội tiếp.
Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.
Từ các tứ giác nội tiếp suy ra:
\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)
hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)
Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)
Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$
\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)
\(\Rightarrow \triangle DEF\) có 3 góc nhọn.
b)
Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)
Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)
Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)
c)
\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)
\(\Rightarrow BDFC\) nội tiếp.
d)
$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)
Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)
Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)
Xét tam giác $BDM$ và $BCD$ có:
\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)
\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)
Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)
Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
http://d.dathoc.com/uploads/resources/601/1199949/preview.swf
cái j đây tuấn