K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Tứ giác nội tiếp

a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)

Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)

\(\Rightarrow ODAF\) là tứ giác nội tiếp.

Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.

Từ các tứ giác nội tiếp suy ra:

\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)

hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)

Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)

Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$

\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)

\(\Rightarrow \triangle DEF\) có 3 góc nhọn.

b)

Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)

Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)

Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)

c)

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)

\(\Rightarrow BDFC\) nội tiếp.

d)

$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)

Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)

Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)

Xét tam giác $BDM$ và $BCD$ có:

\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)

\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)

Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)

Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Nguyễn Xuân Dương: làm sao như vậy được em. Đường tròn (O) tiếp xúc với ba cạnh tam giác thì đây là đặc điểm của đường tròn nội tiếp (tiếp xúc trong) hoặc bàng tiếp (tiếp xúc ngoài). Ở đây ta đang làm trong TH nó tiếp xúc trong.

6 tháng 4 2016

http://d.dathoc.com/uploads/resources/601/1199949/preview.swf

6 tháng 4 2016

cái j đây tuấn 

6 tháng 5 2017

a) Chứng minh tam giác MAB đồng dạng tam giác MFC 

b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)

c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang

d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH

\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH

BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2


vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
10 tháng 5 2019

mình hỏi rồi nè

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp