K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

A B C M

a/ Câu này không chỉ có 1 cách mình trình bày!

Xét tam giác ABM và tam giác ACM có:

   góc BAM = góc CAM (gt)

   AM: chung

  AB = AC (tam giác ABC cân tại A)

=> tam giác ABM = tam giác ACM (c.g.c)

b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao

PS: Học tính chất tam giác cân là làm được

21 tháng 5 2021

a) Xét ΔABC có AB=AC=5 

=> ΔABC cân tại A

ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)

=>\(\widehat{B}=\widehat{C}\)(tc)

Xét ΔABM và ΔACM có

AB=AC gt

có AM là trung tuyến => BM=CM

\(\widehat{B}=\widehat{C}\) (cmt)

=>ΔABM = ΔACM (cgc)

b) có ΔABC cân 

mà AM là trung tuyến => AM là đường cao (tc Δ cân)

c) ta có AM là trung tuyến => 

M là trung điểm của BC 

=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm

Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o

=> AM2+BM2=AB2

=> AM2+32=52

=> AM =4 cm

d) Xét ΔBME và ΔCMF có

\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)

BM=CM (cmt)

\(\widehat{B}=\widehat{C}\)

=>ΔBME = ΔCMF (ch-cgv)

=>EM=FM( 2 góc tương ứng)

Xét ΔMEF có 

EM=FM (cmt)

=> ΔMEF cân tại M

21 tháng 5 2021

đố ai làm đc 

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

19 tháng 1 2021

a, xét △ AMB và △ AMC có:

                AB=AC(gt)

                góc BAM=góc CAM (gt)

                AM chung

=> △ AMB= △ AMC(c.g.c)

b,xét △ AHM và △ AKM có:

                AM cạnh chung

                góc HAM=ˆgóc KAM (gt)

=>△ AHM= △ AKM(CH-GN)

=> AH=AK

c,gọi I là giao điểm của AM và HK

xét △ AIH và △ AIK có:

            AH=AK(theo câu b)

            góc AIH=ˆgóc AIK (gt)

            AI chung

=> △ AIH=△ AIK (c.g.c)

=> góc AIH=ˆgóc AIK 

mà góc AIH+góc AIK=180độ(2 góc kề bù)

=> HK ⊥ AM

19 tháng 1 2021

Cho 1000 like & 1000 ❤

3 tháng 5 2017

A B C M

a)Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(do tam giác ABC cân tại A)

BM=MC(đường trung tuyến AM cắt BC tại M)

=>tam giác AMB = tam giác AMC (c.c.c)

b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)

mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC

c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)

Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82

<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)

14 tháng 12 2017
  
 

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)
  MB=MC(Giả thiết) --
b, +Ta có: tam giác ABM=ACM
 => góc AMB=góc AMC (2 góc tương ứng)
    +Ta có:
góc AMB+AMC=180 ( 2 góc kề bù)
      AMB+AMB=180
      AMB = 90(độ)
=>AM vuông góc với BC
c, +Ta có: tam giác ABM=ACM
     => góc BAM=góc CAM(2 góc tương ứng)
     =>AM là tia phân giác của góc BAC
         hay AM là tia phân giác của góc A
Vậy a,tam giác ABM=ACM
       b,AM vuông góc với BC
       c,AM là tia phân giác của góc A

9 tháng 12 2022

A)Xét tam giác AMB và tam giác ABC có

BM=MC (gt)

AB=AC (gt)

AM là cạnh chung

Vậy tam giác AMB =tam giác MAC(c.c.c)

Vì tam giác AMB = tam giác AMC 

Suy ra góc AMB=góc AMC

TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)

Suy ra góc AMB= góc AMC=90 độ

Suy ra Am vuông góc với BC

10 tháng 11 2016

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 12 2018

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA