Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XétΔABC có
BI,CI là các tia phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp
hay AI là tia phân giác của góc BAC
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
Kẻ IK,IH,IE lần lượt vuông góc BC,AB,AC
Xét ΔBHI vuông tại H và ΔBKI vuông tại K có
BI chung
góc HBI=góc KBI
=>ΔBHI=ΔBKI
=>IH=IK
Xét ΔCKI vuông tại K và ΔCEI vuông tại E có
CI chung
góc KCI=góc ECI
=>ΔCKI=ΔCEI
=>IK=IE
=>IH=IE
Xét ΔAHI vuông tại H và ΔAEI vuông tại E có
AI chung
IH=IE
=>ΔAHI=ΔAEI
=>góc HAI=góc EAI
=>AI là phân giác của góc BAC
Xét ΔABC có
BI là phân giác
CI là phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp ΔABC
=>AI là tia phân giác của góc BAC
Sửa đề: Phân giác góc B,C cắt nhau tại I
Kẻ ID⊥AB tại D, IF⊥AC tại F, IE⊥BC tại E
Xét ΔIDB vuông tại D và ΔIEB vuông tại E có
IB chung
\(\widehat{DBI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{DBE}\))
Do đó: ΔIDB=ΔIEB(cạnh huyền-góc nhọn)
⇔ID=IE(hai cạnh tương ứng)(1)
Xét ΔIEC vuông tại E và ΔIFC vuông tại F có
IC chung
\(\widehat{ECI}=\widehat{FCI}\)(CI là tia phân giác của \(\widehat{ECF}\))
Do đó: ΔIEC=ΔIFC(cạnh huyền-góc nhọn)
⇒IE=IF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra ID=IF(=IE)
Xét ΔADI vuông tại D và ΔAFI vuông tại F có
AI chung
ID=IF(cmt)
Do đó: ΔADI=ΔAFI(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{DAI}=\widehat{FAI}\)(hai góc tương ứng)
⇒\(\widehat{BAI}=\widehat{CAI}\)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)