Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
Xét ΔABC có
BI là phân giác
CI là phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp ΔABC
=>AI là tia phân giác của góc BAC
A B C D E I F
Kẻ ID \(\perp\) AB, IE \(\perp\) BC, IF \(\perp\) AC
Xét hai tam giác vuông IBD và IBE có:
IB: cạnh chung
\(\widehat{DBI}=\widehat{EBI}\) (gt)
Vậy: \(\Delta IBD=\Delta IBE\left(ch-gn\right)\)
\(\Rightarrow\) ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông ICF và ICE có:
IC: cạnh chung
\(\widehat{FCI}=\widehat{ECI}\) (gt)
Vậy: \(\Delta ICF=\Delta ICE\left(ch-gn\right)\)
\(\Rightarrow\) IF = IE (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông AID và AIF có:
AI: cạnh chung
ID = IF (cmt)
Vậy: \(\Delta AID=\Delta AIF\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAD}=\widehat{IAF}\) (hai góc tương ứng)
Do đó: AI là tia phân giác của \(\widehat{A}\).
4578
Mấy đại ca làm ơn tick giúp em 8 cái tick em đang rất cần
XétΔABC có
BI,CI là các tia phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp
hay AI là tia phân giác của góc BAC