K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAD và ΔEAD có 

AC=AE

\(\widehat{CAD}=\widehat{EAD}\)

AD chung

Do đó: ΔCAD=ΔEAD

Suy ra: CD=ED

b: Xét ΔABC có AD là đường phân giác

nên AB/BD=AC/CD

mà AB>AC

nên BD>CD

9 tháng 2 2022

Cảm ơn bạn nhé 🤗🤗🤗😁

30 tháng 8 2018

22 tháng 1 2018

C A B D E I H M G K

a) Xét tam giác vuông ECA và EDA có:

Cạnh EA chung

CA = DA (gt)

\(\Rightarrow\Delta ECA=\Delta EDA\)  (Cạnh huyền, cạnh góc vuông)

\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)

Hya AE là phân giác góc CAB.

b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)

Ta có EC = ED; AC = AD nên AE là trung trực của CD.

c) Kẻ CH vuông góc AB.

Ta luôn có D nằm giữa B và H nên HD < HB

Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)

d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.

Vậy G là trọng tâm hay CK cũng có trung tuyến.

 Vậy K là trung điểm BD.

Đề sai rồi bạn

16 tháng 12 2022

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD
AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

b: Xét ΔDBF và ΔDEC có

góc DBF=góc DEC

DB=DE

góc BDF=góc EDC

Do đo: ΔDBF=ΔDEC

c:ΔDBF=ΔDEC

nên góc BDF=góc EDC

=>góc BDF+góc BDE=180 độ

=>E,D,F thẳng hàng

16 tháng 12 2022

có hình k ạ ?

22 tháng 4 2020

A B C D E

a, xét tam giác ABD và tam giác AED có AB = AE (Gt)

AD chung

^BAD = ^EAD do AD Là pg của ^BAC (Gt)

=> tg ABD = tg AED (c-g-c)

=> BD = ED (Đn)

=> tam giác BED cân tại D (đn)

b, tg ABC có AD là pg => DC/AC = DB/AB (tc)

có AC > AB (GT) 

=> DC > DB

Bài làm

a) Xét tam giác ADB và tam giác ADE có: 

AB = AE ( gt )

\(\widehat{BAD}=\widehat{EAD}\)( Do AD phân giác )

AD chung 

=> Tam giác ADB = tam giác ADE ( c.g.c )

=> BD = DE 

=> Tam giác DBE cân ở D.

b) Kẻ BH là tia đối của tia BA.

Xét tam giác BAC có: \(\widehat{CBH}=\widehat{BAC}+\widehat{ACB}\)

=> \(\widehat{ACB}< \widehat{CBH}\) 

Hay \(\widehat{DCE}< \widehat{CBH}\)                                  (1) 

Vì tam giác ADB = tam giác ADE ( cmt )

=> \(\widehat{ABD}=\widehat{AED}\)

Mà \(\widehat{ABD}+\widehat{DBH}=180^0\)( Hai góc kề bù )

\(\widehat{AED}+\widehat{DEC}=180^0\)( Hai góc kề bù )

=> \(\widehat{DBH}=\widehat{DEC}\) 

Hay \(\widehat{CBH}=\widehat{DEC}\)                          (2) 

Từ (1) và (2) => \(\widehat{DCE}< \widehat{DEC}\)

Xét tam giác DEC có: 

\(\widehat{DCE}< \widehat{DEC}\)

=> DE < DC ( Qua hệ giữ cạnh và góc đối diện )

Mà DE = BD ( cmt )

=> BD < DC

Hay DC > DB ( đpcm )

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)