Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
Tự vẽ hình
Xét tam giác BDC và tam giác CEB có :
\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )
BC cạnh chung
\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )
=> tam giác BDC = tam giác CEB ( g.c.g )
=> BD = CE ( 2 cạnh tương ứng )
b) Xét tam giác BEI và tam giác CDI có :
\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )
BD = CE ( cmt)
\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )
=> tam giác BEI và tam giác CDI ( g.c.g )
=> BI = IC ( 2 cạnh tương ứng )
=> tam giác BIC cân ở I ( đpcm )
Xét \(\Delta BDC\) và \(\Delta CEB\) có :
\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)
BC chung
\(\widehat{E}=\widehat{D}=90^o\)
\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)
=> BD = CE ( 2 cạnh tương ứng )
b. Xét \(\Delta BEI\) và \(\Delta CDI\) có :
\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)
BD = CE(câu a)
\(\widehat{E}=\widehat{D}=90^o\)
=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)
=> BI = IC ( 2 cạnh tương ứng )
=> tam giác BIC cân ở I ( đpcm )
Xét tam giác BDC và CEB có
góc E= góc D=90 độ
góc B= Góc C
BC chung
=> tam giác BDC= tam giác CEB(trường hợp cạnh huyền góc nhọn)
=>góc DBC= góc ECB( hai cạnh tương ứng)
mà góc DBC+DBE=góc EBC
góc ECB+ECD=góc BCD
lại có góc EBC=Góc BCD
=>góc DBE=góc BCD
hay góc IBE= cóc ICD
c) có BD và CE cắt nhau tại I
mà trong mộ tam giác ba đường cao đồng quy tại một điểm
=>AI là đường cao hạ từ điingr A của tam giác ABC xuống cạnh BC
=>AI vuông góc với BC
a. Xét tam giác BDI vuông tại D và tam giác CEI vuông tại I có:
\(\left\{{}\begin{matrix}BI=CI\:\left(I\:la\:trung\:diem\:BC\right)\\\widehat{BID}=\widehat{CIE}\:\left(doi\:dinh\right)\end{matrix}\right.\)
\(\Rightarrow\Delta BDI=\Delta CEI\)
\(\Rightarrow BD=CE\:\left(dpcm\right)\)
b. Xét tam giác CDI và tam giác BEI có:
\(\left\{{}\begin{matrix}DI=IE\:\left(\Delta BDI=\Delta CEI\right)\\\widehat{CID}=\widehat{IEB}\left(doi\:dinh\right)\\BI=IC\end{matrix}\right.\)
\(\Rightarrow\Delta CDI=\Delta BEI\)
\(\Rightarrow CD=BE\:\:\left(dpcm\right)\)
Bạn có thể vẽ hình giúp mình đc ko ạ?