K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

a. Xét tam giác BDI vuông tại D và tam giác CEI vuông tại I có:

\(\left\{{}\begin{matrix}BI=CI\:\left(I\:la\:trung\:diem\:BC\right)\\\widehat{BID}=\widehat{CIE}\:\left(doi\:dinh\right)\end{matrix}\right.\)

\(\Rightarrow\Delta BDI=\Delta CEI\)

\(\Rightarrow BD=CE\:\left(dpcm\right)\)

b. Xét tam giác CDI và tam giác BEI có:

\(\left\{{}\begin{matrix}DI=IE\:\left(\Delta BDI=\Delta CEI\right)\\\widehat{CID}=\widehat{IEB}\left(doi\:dinh\right)\\BI=IC\end{matrix}\right.\)

\(\Rightarrow\Delta CDI=\Delta BEI\)

\(\Rightarrow CD=BE\:\:\left(dpcm\right)\)

21 tháng 3 2020

Bạn có thể vẽ hình giúp mình đc ko ạ?

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

15 tháng 12 2020

K lm mà đòi cs ăn thì ăn đầu buồy!!

 

bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.

3 tháng 1 2022

Theo đề bài: BD, CE là đường cao có giao điểm là K => K là trực tâm của tam giác ABC. => AK là đường cao.
Mà tam giác ABC cân => AK vừa là đường cao vừa là phân giác.

25 tháng 4 2019

Tự vẽ hình

Xét tam giác BDC và tam giác CEB có :

\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )

BC cạnh chung

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BDC = tam giác CEB ( g.c.g )

=> BD = CE ( 2 cạnh tương ứng )

b) Xét tam giác BEI và tam giác CDI có :

\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )

BD = CE ( cmt)

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BEI và tam giác CDI  ( g.c.g )

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

25 tháng 4 2019

Xét \(\Delta BDC\) và \(\Delta CEB\) có :

\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)

BC chung

\(\widehat{E}=\widehat{D}=90^o\)

\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)

=> BD = CE ( 2 cạnh tương ứng )

b.  Xét \(\Delta BEI\) và \(\Delta CDI\) có :

\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)

BD = CE(câu a)

\(\widehat{E}=\widehat{D}=90^o\)

=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)  

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

7 tháng 12 2016

Xét tam giác BDC và CEB có

góc E= góc D=90 độ

góc B= Góc C

BC chung

=> tam giác BDC= tam giác CEB(trường hợp cạnh huyền góc nhọn)

=>góc DBC= góc ECB( hai cạnh tương ứng)

mà góc DBC+DBE=góc EBC

góc ECB+ECD=góc BCD

lại có góc EBC=Góc BCD

=>góc DBE=góc BCD

hay góc IBE= cóc ICD

 

7 tháng 12 2016

c) có BD và CE cắt nhau tại I

mà trong mộ tam giác ba đường cao đồng quy tại một điểm

=>AI là đường cao hạ từ điingr A của tam giác ABC xuống cạnh BC

=>AI vuông góc với BC