Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a, Xét △BAD vuông tại D và △CAE vuông tại E
Có: AB = AC (△ABC cân tại A)
BAC là góc chung
=> △BAD = △CAE (ch-gn)
=> AD = AE (2 cạnh tương ứng)
b, Xét △IAE vuông tại E và △IAD vuông tại D
Có: AE = AD (cmt)
AI là cạnh chung
=> △IAE = △IAD (ch-cgv)
=> IAE = IAD (2 góc tương ứng)
=> AI là phân giác EAD
=> AI là phân giác BAC
c, Vì AE = AD (cmt) => △ADE cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
d, Xét △BAM và △CAM
Có: AB = AC (cmt)
BM = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
=> AM là phân giác BAC
Mà AI cũng là phân giác BAC
=> AM ≡ AI
=> 3 điểm A, I, M thẳng hàng
Tự vẽ hình nha bạn
Ta có: tam giác ABC cân tại A
=> B = C
Ta có: Góc D = góc E = 90o (góc vuông)
K1 = K2 (2 góc đối đỉnh)
=> 180 - E - K1 = 180 - D - K2
=> B1 = C1
Vì B = C ; B1 = C1 => B - B1 = C - C1
=> B2 = C2
Vì B2 = C2 nên KBC cân tại K
=> KB = KC
Xét tam giác AKB và tam giác AKC có:
AK cạnh chung (1)
AB = AC (2)
BK = BC (3)
Từ (1) ; (2) ; (3) = > Tam giác AKB = tam giác AKC (c - c - c) (4)
Từ (4) = > A1 = A2 (2 góc tương ứng)
=> AK là tia phân giác của góc A
=> ĐPCM
Tớ sẽ bổ sung thêm hình sau
Theo đề bài: BD, CE là đường cao có giao điểm là K => K là trực tâm của tam giác ABC. => AK là đường cao.
Mà tam giác ABC cân => AK vừa là đường cao vừa là phân giác.