Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
A B C E F H I
E;F lần lượt là tủng điểm của AB; AC (gt)
=> EF là đường trung bình của tam giác ABC (đn)
=> EF = 1/2BC (đl)
=> BC = EF.2
mà EF = 5 cm (gT)
=> BC = 5.2 = 10 (cm)
b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn) (1)
=> HE là trung tuyến của tam giác vuông AHB (đn)
=> HE = 1/2 AB (đl) (2)
(1)(2) => AE = HE
=> E thuộc đường trung trực của AH (Đl) (3)
làm tương tự với F trong tam giác AHC
=> F thuộc đường trung trực của AH (Đl) (4)
(3)(4) => EF là đường trung trực của AH (đl)
b) Gọi giao điểm của ME,DF và KI là O
Ta thấy:ME đi qua E, mà E là trung điểm của AB=> ME là đường trung tuyến xuất phát từ M
DF đi qua F, mà F là trung điểm của AC=> DF là đường trung tuyến xuất phát từ D
KI đi qua I, mà I là trung điểm của BC=> KI là đường trung tuyến xuất phát từ K
Mà ME,DF và KI cắt nhau tại O=>O là trọng tâm => ME,DF và KI đồng quy tại O
Giải
a) Có EF là đường trung bình của của tam giác ABC
=>EF=(1/2)BC=BF
EF//BC
=>BI//EI
=> EBFI là hình bình hành
Ta có :EF//BI =>EF//HI =>KFHI là hình thang
mà góc
A B C H K I E F
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
a: Ta có: ΔAHB vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AB
nên HE=AE
hay E nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến ứng với cạnh huyền AC
nên HF=FA
hay F nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra FE là đường trung trực của AH
hay FE\(\perp\)AH
A B C H D E F
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến
nên HD=AB/2(1)
Xét ΔABC có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình
=>FE=AB/2(2)
Từ (1), (2) suy ra DH=EF