Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░███░███░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░░█░░██░░░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░░█░░░░░░░░░░░░░████░░█████░░░██░ ░░░█░░░█░█░███░█░█░░█░░░░░░░░░░░░████░░█████░░░███░ ░░░░░░░░░░░░░░░░░░░░░░░░██░░░░░░████░░█████░░░████░ ░░░░░░░░░░░░░░░░░░░███████░██░░█████░██████░░██░██░ ░░░░░░░░░░░░█████████████░███░██████░█████░░░░░░██░ ░░░░░░░░░███████████████░████░██████░█████░░░░░░██░ ░░░░░░░█████████████████████░██████░██████░░░░░░██░ ░░░░░██████████████████████░███████░█████░░░░░░███░ ░░░░░█████████████████████████████░██████░░░░░████░ ░░░░████████████████████████████████████░░░░░████░░ ░░░░███████████████████████████████████░░░░█████░░░ ░░░░█████░░░░░░░░████████████████████░░░░██████░░░░ ░░░░░██░░░░░░░░░░████████████████████████████░░░░░░ ░░░░░░░░░░░░░░░░░██████████████████████████░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████████████████░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░█████████████░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██░░░░░░░███████░░░░░░███░███░███░█░░░░░░░░░ ░░░░░░███░░░███████░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░░░███████████░░░░░░░░░░░░░░░█░░███░░█░░█░░░░░░░░░ ░░░████████░░░░░░░░░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░████░░░░░░░░░░░░░░░░░░░░░░░░█░░█░█░███░███░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)
=> AC2 = BC2 - AB2 = 102 - 82 = 36
=> AC = 6 (cm)
2. Xét △AMB và △DMC
Có: AM = MD (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (gt)
=> △AMB = △DMC (c.g.c)
=> MAB = MDC (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DC (dhnb)
Mà AB ⊥ AC
=> CD ⊥ AC (từ vuông góc đến song song)
3. Xét △AHC và △EHC cùng vuông tại H
Có: CH là cạnh chung
AH = EH (gt)
=> △AHC = △EHC (2cgv)
=> AC = EC (2 cạnh tương ứng)
=> △ACE cân tại C
4, Xét △CAM và △BDM
Có: AM = DM (gt)
CMA = BMD (2 góc đối đỉnh)
CM = MB (gt)
=> △CAM = △BDM (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Mà AC = CE (cmt)
=> BD = CE
A B C H E D M S N K I
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng