K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 8 2018
Từ đề bài , ta có: G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow GC=2GK=GK+KH=GH\)
và \(GB=2GN=GN+NI=GI\)
Chứng minh được \(\Delta CGB=\Delta HGI\left(c.g.c\right)\) \(\Rightarrow IH=BC\) (2 cạnh tương ứng)
Vậy \(IH=BC.\)
PT
1
14 tháng 2 2023
a: Xet ΔBHK vuông tại K và ΔCHN vuông tại N có
góc BHK=góc CHN
=>ΔBHK đồng dạng vơi ΔCHN
b: ΔBHK đồng dạngb vơi ΔCHN
=>HB/HC=HK/HN
=>HB/HK=HC/HN
=>ΔHBC đồng dạng với ΔHKN
c: Xét ΔBMH vuông tại M và ΔBNC vuông tại N có
góc MBH chung
=>ΔBMH đồng dạng vơi ΔBNC
=>BM/BN=BH/BC
=>BH*BN=BM*BC
Xét ΔCHM vuông tại M và ΔCBK vuông tại K có
góc BCK chung
=>ΔCHM đồng dạng vơi ΔCBK
=>CH/CB=CM/CK
=>CB*CM=CH*CK
BH*BN+CH*CK
=BM*BC+CM*BC
=BC^2
Giúp em với
Do AM là đường cao \(\Rightarrow AM\perp BC\Rightarrow\widehat{BMH}=90^0\)
Tương tự BN là đường cao nên \(\widehat{BNC}=90^0\)
Xét hai tam giác BMH và BNC có:
\(\left\{{}\begin{matrix}\widehat{MBH}-chung\\\widehat{BMH}=\widehat{BNC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BMH\sim\Delta BNC\left(g.g\right)\)
\(\Rightarrow\dfrac{BH}{BC}=\dfrac{BM}{BN}\Rightarrow BH.BN=BM.BC\)