K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

\(B=x^2+2xy+y^2-2x-2y\)

\(B=\left(x+y\right)^2-2\left(x+y\right)\)

\(B=3^2-2\cdot3\)

\(B=9-6\)

\(B=3\)

30 tháng 4 2019

B=3 nhé

nhớ tích

26 tháng 4 2020

Bài này đúng đề nhé chị Quản Lý

Ta có : \(x+y-2=0\)

\(\Rightarrow x+y=2\)

\(E=x^3+x^2y-2x^2-xy^2+2xy+2x+2y-2-x^2y\)

\(E=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2x+2y-2\)

\(E=x^2\left(x+y-2\right)-xy\left(x+y\right)+2xy+2\left(x+y\right)-2\)

\(E=x^2.0-2xy+2xy+2.2-2\)

\(E=0+0+4-2\)

\(E=2\)

Vậy \(E=2\)

17 tháng 7 2019

A= -(x^2-2x+3)=-(x^2-2x+1+2)=-[(x-1)^2+2]=-(x-1)^2-2

vs mọi x cs:

-(x-1)^2 < 0

=> -(x-1)^2-2 < -2

dấu = xảy ra <=> (x-1)^2=0

                     <=> x-1=0<=>x=1 

vậy GTLN của A=-2 khi x=1

9 tháng 4 2019

Online Math là nhất

Online Math như cặc

17 tháng 7 2019

\(A=-\left(x^2-2x+1\right)-2\)

\(A=-\left(x-1\right)^2-2\)

Vì \(-\left(x-1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-2\le0-2;\forall x\)

Hay \(A\le-2;\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x-1\right)^2=0\)

                       \(\Leftrightarrow x=1\)

Vậy MAX A=-2 \(\Leftrightarrow x=1\)

17 tháng 7 2019

\(C=-2x^2+2xy-y^2+2x+4\)

\(C=-x^2+2xy-y^2-x^2+2x-1+5\)

\(C=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)+5\)

\(C=-\left(x-y\right)^2-\left(x-1\right)^2+5\le5\)

Dấu = xảy ra khi :

    \(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\Leftrightarrow x=y=1\)

Vậy C max = 5 tại x = y = 1

19 tháng 4 2020

a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5

A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )

A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3

A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )

A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )

b) x = -1, y = 1

Thay x = -1, y = 1 vào đa thức A ta được :

\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)

\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)

\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)

\(=-6+4+\left(-2\right)\)

\(=-4\)

Vậy A = -4 khi x = -1 , y = 1

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich