K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

Ta có : S = 4 + 42 + 43 + 44 + 45 + 46 + ... + 42014 + 42015 + 42016

= (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)

= 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 42015(1 + 4 + 42)

= (1 + 4 + 42)(4 + 44 + ... + 42015)

= 21(4 + 44 + ... + 42015

=> S \(⋮\)21 (1)

Lại có S = 4 + 42 + 43 + 44 + .... + 42015 + 42016

= (4 + 42) + (43 + 44) + .... + (42015 + 42016)

= (4 + 42) + 42(4 + 42) + ... + 42014(4 + 42)

= (4 + 42)(1 + 42 + ... + 42014)                         

= 20(1 + 42 + ... + 42014)  

=> S \(⋮\)20 (2)

Lại có ƯCLN(20;21) = 1 (3)

Từ (1)(2)(3)

=> S \(⋮20.21\Rightarrow S⋮420\)(ĐPCM)

4 tháng 6 2018

Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)

Cần chứng minh

\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)

\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)

Rôi phân phối ra là thấy

4 tháng 6 2018

E ko hiểu

29 tháng 6 2016

\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}-\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)đpcm

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow (4x^2-4xy+y^2)+y^2+2z^2-2z(2x-y)-6y-10z+34=0\)

\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+y^2+z^2-6y-10z+34=0\)

\(\Leftrightarrow (2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0\)

\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)

Do \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\), nên để tổng của chúng bẳng $0$ thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\Rightarrow \left\{\begin{matrix} y=3\\ z=5\\ x=4\end{matrix}\right.\)

\(\Rightarrow S=(x-4)^{2014}+(y-4)^{2015}+(z-4)^{2016}=0+(-1)^{2015}+1^{2016}=-1+1=0\)

7 tháng 3 2019

\(4^{2016}+4^{2017}+4^{2018}\)

\(=4^{2015}\cdot\left(4+4^2+4^3\right)\)

\(=4^{2015}\cdot84⋮84\left(đpcm\right)\)

16 tháng 9 2019

S=4+22+23+...+298=22+22+23+...+298=2.22+23+..+298=23+23+...+298=299

Ta thấy 299 không phải là số chính phương => S cũng không phải là số chính phương (đpcm)

23 tháng 5 2018

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

7 tháng 8 2018

1/ Tính: \(A=\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{10}+1\right)^2}}{2\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}+\sqrt{\left(2\sqrt{2}+2\right)^2}}=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}=\dfrac{2\sqrt{2}-1}{6\sqrt{2}-3}=\dfrac{2\sqrt{2}-1}{3\left(2\sqrt{2}-1\right)}=\dfrac{1}{3}\)

7 tháng 8 2018

\(B=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}-2\sqrt{2}-2\sqrt{3}+\sqrt{6}-\sqrt{6}-3+2\sqrt{2}+2\sqrt{2}+2\sqrt{3}-\sqrt{6}-\sqrt{6}-3}{2-\left(\sqrt{2}+\sqrt{3}\right)^2}=\dfrac{4\sqrt{2}-2\sqrt{6}-6}{2-2-3-2\sqrt{6}}=\dfrac{2\left(2\sqrt{2}-\sqrt{6}-3\right)}{-3-2\sqrt{6}}\)

14 tháng 10 2017

\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2016}}}}< \sqrt{2\sqrt{3\sqrt{4....\sqrt{2015\sqrt{2016.2018}}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4....\sqrt{2015\sqrt{2017^2-1}}}}}< \sqrt{2\sqrt{3\sqrt{4....\sqrt{2015.2017}}}}\)

\(...........................................................................\)

\(< \sqrt{2.4}< \sqrt{9}=3\)

15 tháng 10 2017

cái dòng thứ 2 sao lại ra như vậy hả bạn