\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2015\sqrt{2016}}}}}< 3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(\sqrt{2\sqrt{3\sqrt{4....\sqrt{2016}}}}< \sqrt{2\sqrt{3\sqrt{4....\sqrt{2015\sqrt{2016.2018}}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4....\sqrt{2015\sqrt{2017^2-1}}}}}< \sqrt{2\sqrt{3\sqrt{4....\sqrt{2015.2017}}}}\)

\(...........................................................................\)

\(< \sqrt{2.4}< \sqrt{9}=3\)

15 tháng 10 2017

cái dòng thứ 2 sao lại ra như vậy hả bạn

29 tháng 12 2015

nếu là toán lớp 9 thì bạn vào hoc24.vn để đăng câu hỏi nha bạn

Ai đồng ý thì cho ít **** !!!

29 tháng 12 2015

Toán lớp 9 phải vào Học.24h.

Quản lý bảo thế!!!

18 tháng 12 2016

tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha

21 tháng 12 2016

Bài này trước tiên ta phải đi chứng minh công thức:

                      \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 Xong áp dụng là ra thui.
 

7 tháng 7 2016

Với mọi n>0 ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng đẳng thức trên vào D ta được:

\(D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}=1-\frac{\sqrt{2016}}{2016}=\frac{2016-\sqrt{2016}}{2016}\)

8 tháng 6 2017

Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại

8 tháng 6 2017

giúp đi

22 tháng 6 2016

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{2-1}{1+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+\frac{4-3}{\sqrt{3}+\sqrt{4}}+...+\frac{2016-2015}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}\right)^2-1}{1+\sqrt{2}}+\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+\sqrt{4}}+...+\frac{\left(\sqrt{2016}\right)^2-\left(\sqrt{2015}\right)^2}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{1+\sqrt{2}}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{3}+\sqrt{4}}+...=.\)

\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2016}-\sqrt{2015}\)

\(=\sqrt{2016}-1\). đpcm

22 tháng 6 2016

\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)

đkxđ x>=2,x>0

\(\frac{3}{2}\sqrt{4\left(x-2\right)}-9\sqrt{\frac{x-2}{81}}=6\)

đặt t=x-2

\(\frac{3}{2}\sqrt{4t}-9\sqrt{\frac{t}{81}}=6\)

\(\frac{3}{2}.2\sqrt{t}-9\frac{\sqrt{t}}{9}=6\)

\(3\sqrt{t}-\sqrt{t}=6\)

\(2\sqrt{t}=6\)

\(\sqrt{t}=3=>t=9\)

thế t vào x-2 ta được 

x-2=9<=> x=11 (thỏa)

S={11}

8 tháng 10 2018

Ta có : 

\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)

\(\left(2\sqrt{2016}\right)^2=8064\)

Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)

Vậy... 

Chúc bạn học tốt ~ 

8 tháng 10 2018

Cảm ơn bn nhiều nhé :)))

1 tháng 1 2017

Chịu không giao luu nổi

1 tháng 1 2017

Cứ rút từ từ là ra

18 tháng 8 2017

khó wa

28 tháng 6 2018

\(P=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(P=1+\sqrt{2}\)

bởi vì tách \(4=\sqrt{4}+\sqrt{4}\)

các bài khác tương tự

27 tháng 7 2017

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)