Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(s=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+.......+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=\left(3^0+3^2+3^4\right)\left(1+3^6+....+3^{1998}\right)\)
\(=91\left(1+3^6+...+3^{1998}\right)\)
Vì 91 chia hết cho 7
=> S chia hết cho 7 ( đpcm )
Ai t mik thì nói nha mik sẽ T lại
Thái Thùy Dung bn vào câu hỏi tương tự họ giải chi tiết nhá. Nhớ ****. Mk tl sớm nhất royy
\(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...3^{2000}+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-3^0=3^{2004}-1\)
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
a, \(S=3^0+3^2+3^4+....+3^{2002}\)
\(3S=3+3^3+....+3^{2003}\)
\(2S=3^{2003}-1\)
b, \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)
=> (đpcm)
a) S = 30 + 32 + 34 + ..... + 32002
9S = 32 + 34 + ..... + 32002 + 32004
9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)
8S = 32004 - 30
S = \(\frac{3^{2004}-1}{8}\)
b) S = 30 + 32 + 34 + ..... + 32002
S = (30 + 32 + 34) + (36 + 38 + 310) + ..... + (32000 + 32001 + 32002)
S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)
S = 91 + 36 . 91 + ...... + 32000 . 91
S = 91 . (1 + 36 + ...... + 32000)
S = 7 . 13 . (1 + 36 + ...... + 32000)
A) Nhân S với 32 ta được :
9S = 3^2 + 3^4+...+ 3^2002 + 3^2004
\(\Rightarrow\)9S - S = ( 3^2 + 3^4 + .. + 3^2004 ) - ( 3^0 + 3^4+...2^2002 )
\(\Rightarrow\)8S = 32004 - 1
\(\Rightarrow\)S = 32004 - 1 /8
B) Ta có S là số nguyên nên phải chứng minh 32004 - 1 chia hết cho 7
Ta có : 32004 - 1 (36)334 - 1 = ( 36 - 1 ).M =7.104.M
\(\Rightarrow\)32004 chia hết cho 7 . Mặt khác ƯCLN (7;8)= 1 nên S chia hết cho 7
Kết bạn với mình nhé
Cảm ơn bạn nhiều
Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Nhân xét :
\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)
\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)
\(\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
Vì \(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Bài 1)
Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1
câu 1hinhf như sai đề
Tớ nghĩ là S= 30 + 32 + 34 +36 +...+ 32002
thì đúng hơn
Easy????
a) Ta có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)
=> 32S = \(3^2+3^4+3^6+...+3^{2004}\)
=> 9S - S = \(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+...+3^{2002}\right)\)
=> 8S = \(3^{2004}-3^0\)
=> S = \(\dfrac{3^{2004}-1}{8}\)
b) Ta lại có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)
=\(\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
= \(3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+\)\(3^{1998}\left(1+3^2+3^4\right)\)
= \(91\left(3^0+3^6+...+3^{1998}\right)\)
Vì 91 \(⋮\) 7 => \(91\left(3^0+3^6+...+3^{1998}\right)\) \(⋮\) 7
=> S \(⋮\) 7 ( đpcm)