Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy=\frac{y^2+4+4+4x^2}{\left(1+x^2\right)\left(4+y^2\right)}+xy=\frac{y^2+4x^4+4}{\left(1+x^2\right)\left(4+y^2\right)}+xy\)
Áp dụng BĐT Cosi:
\(y^2+4x^2\ge4xy\ge8\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+4\ge4y\end{cases}\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\ge8xy\ge16}\)
=> \(\frac{y^2+4x^2+8}{\left(x^2+1\right)\left(y^2+4\right)}\ge\frac{8}{16}=\frac{1}{2}\)
=> \(T\ge\frac{1}{2}+2=\frac{5}{2}\)
\(Min_T=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}y=2x\\xy=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)
\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)
Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)
\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)
\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)
\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)
dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)
\(\Rightarrow\)Min \(p=2\sqrt{6}+2013\)
Bạn xem hộ mình sai ở đâu giùm nha?
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
Từ x + y = 3 => x = 3 - y thay vào biểu thức D, ta có:
D = 2(3 - y)2 + y2 - 3(3 - y) + 2013
D = 3(y2 - 6y + 9) + y2 - 9 + 3y + 2013
D = 3y2 - 18y + 27 + y2 + 3y + 2004
D = 4y2 - 15y + 2031
D = 4y2 - 15y + 14 + 2017
D = (y - 2)(4y - 7) + 2017
Với y \(\ge\)2 => 4y - 7 > 0 và y - 2 \(\ge\)0
=> D \(\ge\)2017
Dấu "=" xảy ra <=> y - 2 = 0 và x = 3 - y <=> y = 2 và x = 3 - 2 = 1
Vậy MinD = 2017 <=> x = 1 và y = 2
Edogawa cona ơi, nhưng thay x=1, y=2 vào D thì nó đâu có ra 2017