Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
\(A+5=x^2+4+y^2+1+\frac{1}{x}+\frac{1}{x+y}=4x+2y+...=\frac{x+y}{9}+\frac{1}{x+y}+\frac{1}{x}+\frac{x}{4}+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x\ge\frac{65}{6}=>A\ge\frac{35}{6}\\ .\)Bài bất :)
2/ \(\hept{\begin{cases}\frac{xy}{2}+\frac{5}{2x+y-xy}=5\\2x+y+\frac{10}{xy}=4+xy\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{xy}{2}=a\\2x+y-xy=b\end{cases}}\)
Thì ta có hệ:
\(\hept{\begin{cases}a+\frac{5}{b}=5\\b+\frac{5}{a}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=5-\frac{5}{b}\left(1\right)\\b+\frac{5}{5-\frac{5}{b}}=4\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow b^2-4b+4=0\)
\(\Leftrightarrow b=2\)
\(\Rightarrow a=\frac{5}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{xy}{2}=\frac{5}{2}\\2x+y-xy=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=5\\2x+y=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=5\end{cases}or\orbr{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}}\)
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1
\(T=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy=\frac{y^2+4+4+4x^2}{\left(1+x^2\right)\left(4+y^2\right)}+xy=\frac{y^2+4x^4+4}{\left(1+x^2\right)\left(4+y^2\right)}+xy\)
Áp dụng BĐT Cosi:
\(y^2+4x^2\ge4xy\ge8\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+4\ge4y\end{cases}\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\ge8xy\ge16}\)
=> \(\frac{y^2+4x^2+8}{\left(x^2+1\right)\left(y^2+4\right)}\ge\frac{8}{16}=\frac{1}{2}\)
=> \(T\ge\frac{1}{2}+2=\frac{5}{2}\)
\(Min_T=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}y=2x\\xy=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)