K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)

\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\

\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )

\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)

\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

23 tháng 4 2016

Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến  \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như  \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\)  (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là  \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\)  \(s\) đi!

Đề: Cho ba số thực dương  \(x,y,z\)  thỏa mãn  \(x+y+z=1\)  

Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\)  \(\left(\text{*}\right)\)

Lời giải:

Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được  \(1>x,y,z>0\)  với mọi  \(x,y,z\in R^+\)

\(\Rightarrow\)  \(1-x>0;\)  \(1-y>0;\)  \(1-z>0\)  

Khi đó, áp dụng bất đẳng thức  \(AM-GM\)  cho hai số không âm với chú ý rằng  \(x+y+z=1\)  (theo giả thiết), ta có: 

\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị  \(y\)  \(\rightarrow\)  \(z\)  \(\rightarrow\)  \(x\), ta chứng minh được:

\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\)  \(\left(2\right)\)  và  \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\)  \(\left(3\right)\)

Cộng từng vế các bất đẳng thức \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right),\)  ta được:

\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{3}\)

23 tháng 4 2016

ở mẫu phải là dấu cộng mới đúng chứ bạn

26 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)

Cộng các vế của các BĐT trên, ta được:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)

Tiếp tục áp dụng Cô - si:

\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)

Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

29 tháng 12 2019

\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự:

\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)

\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

29 tháng 2 2020

VT \(\ge\frac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3.z^3.1}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3.x^3.1}}}{zx}\)( cauchy)

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)

\(\ge3\sqrt{3}\)( cauchy)

"=" <=> x = y =z.

29 tháng 2 2020

Bài này dùng \(a^3+b^3\ge ab\left(a+b\right)\) được không nhỉ ??

Em ngại làm lắm cô Chi, cô thử cách này có được không ạ ?

\(xyz+x^3+y^3\ge xy\left(x+y+z\right)\)\(\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{xy\left(x+y+z\right)}\)

Các mấy cái kia cũng biến đổi vậy.

Không chắc nx :((

24 tháng 11 2019

Nhẩm điểm rơi rồi xơi:)

\(\sqrt{1.x}+\sqrt{1\left(y-1\right)}+\sqrt{1\left(z-2\right)}\)]

\(\le\frac{x+1}{2}+\frac{1+y-1}{2}+\frac{1+z-2}{2}=\frac{x+y+z}{2}\)

Đẳng thức xảy ra khi x = 1; y = 2; z = 3

23 tháng 4 2016

13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α

9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√  9ββ2x2+(1+x2)2

 S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2  x=25√

23 tháng 4 2016

13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α

9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√  9ββ2x2+(1+x2)2

 S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2  x=25√

6 tháng 2 2022

srweafgtseawref