Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)
\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)
\(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)
\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)
Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)
Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z
P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý
Sửa đề : CMR : \(xyz\le\frac{1}{8}\)
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\Rightarrow\frac{1}{z+1}\ge\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{x}{x+1}+\frac{y}{y+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(1\right)\)(bđt AM - GM)
Tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(y+1\right)}}\left(2\right)\\\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\left(3\right)\end{cases}}\)
Nhân vế với vế của (1) ; (2) ; (3) laih ta được :
\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}\)(đpcm)
Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)
\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\
\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )
\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)
\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
@Trần Thùy Linh nói đúng đề rồi nhé
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
Áp dụng bđt Cauchy cho 3 số không âm :
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{xyz}}=3\sqrt[3]{1}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=x=1\)
13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α
9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√ 9ββ2x2+(1+x2)2
S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2 x=25√
13x2−x4−−−−−−√=13αα2x2(1−x2)−−−−−−−−−−−√ 13αα2x2+(1−x2)2=13(α2−1)x2+132α
9x2+x4−−−−−−√=9ββ2x2(1+x2)−−−−−−−−−−−√ 9ββ2x2+(1+x2)2
S=13x2−x4−−−−−−√+9x2+x4−−−−−−√ [13(α2−1)2α+9(β2+1)2β]x2+132α+92β
Dấu bằng xảy ra khi:{α2x2=1−x2β2x2=1+x2(1)
Mục đích của ta là khử hết x2
do đó:13(α2−1)2α+9(β2+1)2β=0(2)
Giải (1)và(2) ta tìm được α=12;β=32.Lúc này:
S 132α+92β=16
Vậy Max của S=16,dấu bằng xảy ra khi (1)α2x2=1−x2 x=25√
a) Áp dụng đbt Cauchy cho 2 số không âm ta có :
\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)
còn câu b bạn