Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
Vật M=2
dùng hằng đẳng thức nhé bạn
\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)
\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)
\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)
mà ta có: \(x^2+y^2=1\)
\(\Rightarrow N=2-y^2+y^2=2\)
chúc bạn học tốt
\(M=2x^4+3x^2y^2+y^4+y^2\) với \(x^2+y^2=1\)
\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2.1+y^2.1+y^2\)
\(=2x^2+y^2+y^2\)
=\(2\left(x^2+y^2\right)\)
\(=2.1=2\)
\(\Rightarrow M=2\)
Ta có:
\(2x^4+3x^2y^2+y^4+y^2=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2\)
\(=2\left(x^2+y^2\right)=2.1=2\)
\(2x^4+3x^2y^2+y^4+y^2\text{ v}ớ\text{i }x^2+y^2=1\)
\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2.y^2+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2.1+y^2.1+y^2\)
\(=2x^2+y^2+y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=2.1=2\)
Từ \(x^2+y^2=2\) suy ra \(y^2=2-x^2\)
thế \(y^2=2-x^2\) vào M tính được M=8
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
M= (x4+2x2y2+y4) + (x4+x2y2) + y2 = (x2+y2)2 + x2.(x2+y2) + y2= 12+ x2.1+ y2=1+1=2
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói