Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì Oz là tia phân giác của xOy
=> xOz = zOy = xOy/2 = 60o/2 = 30o
b, Xét △OIA và △ OIB
Có: OA = OB
AOI = IOB
OT là cạnh chung
=> △OIA = △OIB (c.g.c)
c, Vì △OIA = △OIB
=> AIO = OIB (2 góc tương ứng)
Mà AIO + OIB = 180o (2 góc kề bù)
=> AIO = OIB = 90o
=> OI vuông góc AB
Hình dễ tự vẽ
a ) Oz là tia p/g của góc xOy => \(\widehat{xOz}=\widehat{zOy}=\frac{1}{2}.\widehat{xOy}=30^o\)
=> góc zOy = 30 độ
b ) Xét tam giác OIA và tam giác OIB có :
OA = OB ( gt )
\(\widehat{xOz}=\widehat{zOy}\)( Oz là tia p/g của góc xOy )
OI là cạnh chung
=> Tam giác OIA = Tam giác OIB ( c.g.c )
b ) Do tam giác OIA = tam giác OIB ( cm trên ) => \(\widehat{OIA}=\widehat{OIB}\)
Ta có :
\(\widehat{OIA}+\widehat{OIB}=180^o\)( hai góc kề bù )
\(\widehat{OIA}+\widehat{OIA}=180^o\)
\(\widehat{OIA}.2=180^o\)
=> \(\widehat{OIA}=90^o\)
=> OI vuông góc với AB
Bài giải
1 2 H A C x z y
a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)
và \(\widehat{OAC}=\widehat{OBC}\)mà\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\)
b) Gọi giao điểm của AB với tia Oz là H,ta có :
\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà
\(\Delta OHA=\Delta OHB=90^o\)
\(\Rightarrow\)\(AB\perp Oz\)
P/s Hình hơn xấu :)
Xét ΔOBA vuông tại B và ΔOCA vuông tại C có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đo:ΔOBA=ΔOCA
Suy ra: AB=AC
hay ΔABC cân tại A
Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}+\widehat{COB}+\widehat{CAB}=360^0\)
=>\(\widehat{CAB}=360^0-90^0-90^0-120^0=60^0\)
=>ΔBAC đều
=>\(\widehat{ABI}=60^0\)
a)Tam giác OAM và tam giác OBM có:
OA=OB(gt)
Góc MOA=góc MOB(Oz là tia pg của góc xOy)
OM là cạnh chung
Do đó tam giác OAM=tam giác OBM(c.g.c)
b)Ta có tam giác OAM=tam giác OBM(cmt)
=>Góc OAM=góc OBM và AM=BM
Tam giác AMC và tam giác BMD có:
AM=BM(gt)
góc CAM=góc DBM(cmt)
AC=DB(gt)
=>tam giác AMC=tam giác BMD(c.g.c)
=>góc AMC=góc BMD(2 góc tương ứng)
c)mik chưa nghĩ ra,xin lỗi nha
Hình bạn tự vẽ nha!
a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)
Mà \(A\in Oz\left(gt\right)\)
=> \(OA\) là tia phân giác của \(\widehat{xOy}.\)
Hay \(OA\) là tia phân giác của \(\widehat{BOC}.\)
Xét 2 \(\Delta\) vuông \(ABO\) và \(ACO\) có:
\(\widehat{ABO}=\widehat{ACO}=90^0\left(gt\right)\)
Cạnh AO chung
\(\widehat{BOA}=\widehat{COA}\) (vì \(OA\) là tia phân giác của \(\widehat{BOC}\))
=> \(\Delta ABO=\Delta ACO\) (cạnh huyền - góc nhọn).
b) Theo câu a) ta có \(\Delta ABO=\Delta ACO.\)
=> \(BO=CO\) (2 cạnh tương ứng).
Xét 2 \(\Delta\) vuông \(BOI\) và \(COI\) có:
\(\widehat{OBI}=\widehat{OCI}=90^0\)
\(BO=CO\left(cmt\right)\)
Cạnh OI chung
=> \(\Delta BOI=\Delta COI\) (cạnh huyền - cạnh góc vuông).
=> \(IB=IC\) (2 cạnh tương ứng).
Chúc bạn học tốt!