K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Link đây bạn xem thử

https://www.google.com/search?sxsrf=ALeKk000ftx557H7QV3mBjlHBDDRymSGFQ%3A1586183472602&ei=MD2LXoS4JM3EmAXR5YT4Dg&q=Cho+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1%2C+y+%3D+x+%2B+1+v%C3%A0+y+%3D+-1.+V%E1%BA%BD+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+%C4%91%C3%A3+cho+tr%C3%AAn+c%C3%B9ng+m%E1%BB%99t+h%E1%BB%87+tr%E1%BB%A5c+t%E1%BB%8Da+%C4%91%E1%BB%99+Oxy.+G%E1%BB%8Di+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+l%C3%A0+A%2C+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-1+v%E1%BB%9Bi+hai+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+B+v%C3%A0+C.+T%C3%ACm+t%E1%BB%8Da+%C4%91%E1%BB%99+c%C3%A1c+%C4%91i%E1%BB%83m+A%2C+B%2C+C.+Tam+gi%C3%A1c+ABC+l%C3%A0+tam+gi%C3%A1c+g%C3%AC%3F+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+tam+gi%C3%A1c+ABC

Học tốt

Trong các điều kiện sau, câu nào xác định được một véctơ duy nhất?A. Hai điểm phân biệt. B. Hướng của một véctơ.C. Độ dài một véctơ. D. Hướng và độ dài.Câu 2. Mệnh đề nào sau đây là sai?A. a a ≠ ⇔ ≠ 0 0  B. Cho ba điểm A , B , C phân biệt thẳng hàng CA, CBcùng hướng khi và chỉ khi C nằmngoài đoạn AB .C. a, bcùng phương với cthì a, bcùng phương.D. AB AC AC + =  .Câu 3. Cho ba điểm A , B ,...
Đọc tiếp

Trong các điều kiện sau, câu nào xác định được một véctơ duy nhất?
A. Hai điểm phân biệt. B. Hướng của một véctơ.
C. Độ dài một véctơ. D. Hướng và độ dài.
Câu 2. Mệnh đề nào sau đây là sai?
A. a a ≠ ⇔ ≠ 0 0
  


B. Cho ba điểm A , B , C phân biệt thẳng hàng CA

, CB

cùng hướng khi và chỉ khi C nằm

ngoài đoạn AB .
C. a

, b

cùng phương với c

thì a

, b

cùng phương.

D. AB AC AC + =
  
.

Câu 3. Cho ba điểm A , B , C phân biệt thẳng hàng. Câu nào sau đây đúng?
A. Nếu B là trung điểm của AC thì AB CB =
 

B. Nếu điểm B nằm giữa A và C thì BC

, BA

ngược hướng.

C. Nếu AB AB >
 

thì B nằm trên đoạn AC .

D. CA AB CA AB + = +
   
.
Câu 4. Mệnh đề nào sau đây là sai?
A. AB AC B C = ⇒ ≡
 

.

B. Với mọi điểm A , B , C bất kì ta luôn có: AB BC AC + =
  
.

C. BA BC + = 0
  

khi và chỉ khi B là trung điểm AC .
D. Tứ giác ABCD là hình bình hành khi và chỉ khi AB CD =
 
.

Câu 5. Cho tam giác ABC có trực tâm H và nội tiếp trong đường tròn tâm O . B′ là điểm đối xứng
của B qua O . Mệnh đề nào sau đây là sai?
A. AH

, B C′

cùng phương. B. CH

, B A′

cùng phương.
C. AHCB′ là hình bình hành. D. HB HA HC = +
  
.

Câu 6. Cho tam giác ABC có trọng tâm G , M là trung điểm của BC và O là điểm bất kì. Mệnh đề
nào sau đây là sai?
A. MB MC + = 0
  

. B. OB OC OM + = 2
  
.

C. OG OA OB OC = + +
   

. D. GA GB GC + + = 0
   
.
Câu 7. Cho ∆ABC có trọng tâm G và điểm M thỏa mãn 2 3 0 MA MB MC + + =
   
thì GM

bằng:

A. 1
6
BC

. B. 1
6
CA

. C. 1
6
AB

. D. 1
3
BC

.

Câu 8. Cho tam giác ABC câu nào sau đây là đúng?
A. AB AC BC − =
  

. B. AB CA BC + + = 0
   
.

C. AC BA CB + =
  

. D. AB AC BC + >
  
.
Câu 9. Cho tam giác ABC cân tại đỉnh A . Mệnh đề nào sau đây sai?
A. AB AC =
 
. B. AB AC BC − =
  

. C. BC AB AB + =
  

. D. AB AC =
 
.

Câu 10. Cho tam giác ABC đều cạnh a . Khi đó AB AC +
 
bằng:

A. a 3 . B. 3
2
a
. C. 2a . D. 2 3 a .

3
28 tháng 9 2017

gõ như thế này chắc bạn cx mỏi tay nhỉ

28 tháng 9 2017

Có mỏi tay ko bạn

27 tháng 2 2018

a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)

Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)

Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)

Suy ra \(\widehat{MIC}=\widehat{MBC}\)

Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.

b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)

\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)

Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)

Vậy nên \(FI.FM=FE.FD\)

c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)

Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)

Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.

Suy ra \(\widehat{FIQ}=90^o\)

Vậy thì P, T, M thẳng hàng.

d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)

Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.

Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.

Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).