Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
\(\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(cos^2\left(a-\frac{\pi}{4}\right)-sin^2\left(a-\frac{\pi}{4}\right)=cos\left(2a-\frac{\pi}{2}\right)\)
\(=cos\left(\frac{\pi}{2}-2a\right)=sin2a\)
\(\pi< a< \frac{3\pi}{2}\Rightarrow2\pi< 2a< 3\pi\Rightarrow sin2a>0\)
\(cot2a=\frac{1}{2}\Rightarrow sin2a=\frac{1}{\sqrt{1+cot^22a}}=\frac{2\sqrt{5}}{5}\)
\(cos\left(a+\frac{\pi}{3}\right)+cos\left(a-\frac{\pi}{3}\right)=2cosa.cos\frac{\pi}{3}=cosa\)
\(tan\left(\frac{\pi}{2}-a\right)+tan\left(\frac{\pi}{2}+\frac{a}{2}\right)=\frac{-sin\frac{a}{2}}{cos\left(\frac{\pi}{2}-a\right).cos\left(\frac{\pi}{2}+\frac{a}{2}\right)}=\frac{sin\frac{a}{2}}{sina.sin\frac{a}{2}}=\frac{1}{sina}\)
\(\Rightarrow M=sina.cosa=\frac{1}{2}sin2a=\frac{\sqrt{5}}{5}=\frac{1}{\sqrt{5}}\)
\(\Rightarrow2a+b=7\)
\(\frac{a}{2}\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow tan\frac{a}{2}< 0\) ; \(sin\frac{a}{2}>0;cos\frac{a}{2}< 0\)
Đặt \(tan\frac{a}{2}=x< 0\)
\(\frac{2x}{1-x^2}=3\Leftrightarrow3x^2+2x-3=0\Rightarrow tan\frac{a}{2}=x=\frac{-1-\sqrt{10}}{3}\)
\(tan2a=\frac{2tana}{1-tan^2a}=\frac{6}{1-9}=-\frac{3}{4}\)
\(tan4a=\frac{2tan2a}{1-tan^22a}=-\frac{24}{7}\)
\(cos\frac{a}{2}=-\frac{1}{\sqrt{1+tan^2\frac{a}{2}}}=\) số thật kinh khủng
\(sin\frac{a}{2}=\sqrt{1-cos^2\frac{a}{2}}=...\)
\(sin\left(\frac{a}{2}+\frac{\pi}{2}\right)=\sqrt{2}\left(sin\frac{a}{2}+cos\frac{a}{2}\right)=...\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow sin2a=2sina.cosa>0\)
\(\Rightarrow sin2a=\sqrt{1-cos^22a}=\frac{3\sqrt{7}}{8}\)
\(cos2a=1-2sin^2a=\frac{1}{8}\)
\(\Leftrightarrow sin^2a=\frac{7}{16}\Rightarrow sina=-\frac{\sqrt{7}}{4}\)
\(\Rightarrow M=\frac{-\frac{\sqrt{7}}{4}-\frac{3\sqrt{7}}{8}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{8}}=...\)
\(sinx\left(1-tan^2\frac{x}{2}\right)=sinx\left(1-\frac{sin^2\frac{x}{2}}{cos^2\frac{x}{2}}\right)=sinx\left(1-\frac{1-cosx}{1+cosx}\right)\)
\(=sinx\left(\frac{1+cosx-\left(1-cosx\right)}{1+cosx}\right)=\frac{2sinx.cosx}{1+cosx}\)
\(1-sin2x.sin3x-cos2x.cos3x=1-\left(cos3x.cos2x+sin3x.sin2x\right)=1-cos\left(3x-2x\right)=1-cosx\)
\(\Rightarrow\frac{1-sin2x.sin3x-cos2x.cos3x}{sinx\left(1-tan^2\frac{x}{2}\right)}=\frac{1-cosx}{\frac{2sinx.cosx}{1+cosx}}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{2sinx.cosx}\)
\(=\frac{1-cos^2x}{2sinx.cosx}=\frac{sin^2x}{2sinx.cosx}=\frac{sinx}{2cosx}=\frac{1}{2}tanx\)
a/ \(\frac{\pi}{2}\le y\le\pi\Rightarrow cosy< 0\)
\(\Rightarrow cosy=-\sqrt{1-sin^2y}=-\frac{2\sqrt{2}}{3}\)
\(sin2y=2siny.cosy=2.\left(\frac{1}{3}\right).\left(-\frac{2\sqrt{2}}{3}\right)=-\frac{4\sqrt{2}}{9}\)
\(cos\left(\frac{\pi}{3}-y\right)=cos\frac{\pi}{3}cosy+sin\frac{\pi}{3}siny=\frac{\sqrt{3}-2\sqrt{2}}{6}\)
\(tany+5=\frac{siny}{cosy}+5=5-\frac{\sqrt{2}}{4}\)
b/ \(-\frac{\pi}{2}\le a\le9\Rightarrow sina\le0\)
\(\Rightarrow sina=\sqrt{1-cos^2a}=-\frac{4}{5}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=cos^2a-sin^2a=-\frac{7}{25}\)
\(tan2a=\frac{sin2a}{cos2a}=\frac{24}{7}\)
c/ \(\pi\le a\le\frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina\le0\\cosa\le0\end{matrix}\right.\)
\(\Rightarrow cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{1}{2}\Rightarrow sina=-\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left(\sqrt{3}-sin2a\right)sin\frac{2\pi}{3}=\frac{3}{4}\)
Câu 1:
\(tan\left(a+\frac{\pi}{4}\right)=1\Rightarrow a+\frac{\pi}{4}=\frac{\pi}{4}+k\pi\Rightarrow a=k\pi\) (\(k\in Z\) )
Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow\frac{\pi}{2}< k\pi< 2\pi\Rightarrow\frac{1}{2}< k< 2\Rightarrow k=1\Rightarrow a=\pi\)
\(\Rightarrow P=cos\left(\pi-\frac{\pi}{6}\right)+sin\pi=-\frac{\sqrt{3}}{2}\)
Câu 2:
\(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}=cot\left(-\frac{\pi}{6}\right)\)
\(\Rightarrow a+\frac{\pi}{3}=-\frac{\pi}{6}+k\pi\Rightarrow a=-\frac{\pi}{2}+k\pi\) (\(k\in Z\))
\(\Rightarrow\frac{\pi}{2}< -\frac{\pi}{2}+k\pi< 2\pi\Rightarrow-\pi< k\pi< \frac{5\pi}{2}\)
\(\Rightarrow-1< k< \frac{5}{2}\Rightarrow k=\left\{0;1;2\right\}\Rightarrow a=\left\{-\frac{\pi}{2};\frac{\pi}{2};\frac{3\pi}{2}\right\}\) \(\Rightarrow cosa=0\)
\(\Rightarrow P=sin\left(\pi+\frac{\pi}{6}\right)+0=-sin\frac{\pi}{6}=-\frac{1}{2}\)
Vậy đáp án sai
Bạn thay thử \(a=\frac{3\pi}{2}\) vào biểu thức ban đầu coi có đúng \(cot\left(a+\frac{\pi}{3}\right)=-\sqrt{3}\) ko là biết đáp án đúng hay sai liền mà
\(\frac{\pi}{2}< a< \pi\Rightarrow\pi< 2a< 2\pi\)
Mà \(tan2a< 0\) \(\Rightarrow\frac{3\pi}{2}< 2a< 2\pi\Rightarrow cos2a>0\)
\(\Rightarrow cos2a=\frac{1}{\sqrt{1+tan^22a}}=\frac{3}{5}\)
\(tan\left(2a+\frac{\pi}{4}\right)=\frac{tan2a+tan\frac{\pi}{4}}{1-tan2a.tan\frac{\pi}{4}}=\frac{-\frac{4}{3}+1}{1+\frac{4}{3}}=...\)