Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
a, \(sin\alpha=\frac{1}{5},\frac{\pi}{2}< \alpha< \pi\)
+) \(sin^2\alpha+cos^2\alpha=1\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos^2\alpha=\frac{24}{25}\Leftrightarrow cos\alpha=\pm\frac{2\sqrt{6}}{5}\)
mà \(\frac{\pi}{2}< \alpha< \pi\Rightarrow cos\alpha=-\frac{2\sqrt{6}}{5}\)
+) \(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\frac{1}{5}}{-\frac{2\sqrt{6}}{5}}=-\frac{\sqrt{6}}{12}\)
+) \(cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac{-\frac{2\sqrt{6}}{5}}{\frac{1}{5}}=-2\sqrt{6}\)
a/ \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)
\(tanx=\frac{sinx}{cosx}=-\frac{\sqrt{6}}{12}\) ; \(cotx=\frac{1}{tanx}=-2\sqrt{6}\)
b/ \(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\)
\(\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{5\sqrt{26}}{26}\)
\(sina=tana.cosa=-\frac{\sqrt{26}}{26}\)
c/ \(0< a< \frac{\pi}{2}\Rightarrow sina;cosa>0\)
\(\left\{{}\begin{matrix}cos^2a+sin^2a=1\\2sina.cosa=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow sina+cosa=\frac{\sqrt{15}}{3}\Rightarrow cosa=\frac{\sqrt{15}}{3}-sina\)
\(\Rightarrow sina\left(\frac{\sqrt{15}}{3}-sina\right)=\frac{1}{3}\Rightarrow sin^2a-\frac{\sqrt{15}}{3}sina+\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=\frac{\sqrt{15}+\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}-\sqrt{3}}{6}\\sina=\frac{\sqrt{15}-\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}+\sqrt{3}}{6}\end{matrix}\right.\) \(\Rightarrow tana=\frac{sina}{cosa}=...\)
d/ \(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)
\(cosa=\sqrt{2}-sina\) \(\Rightarrow sin^2a+\left(\sqrt{2}-sina\right)^2=1\)
\(\Leftrightarrow2sin^2a-2\sqrt{2}sina+1=0\Rightarrow sina=\frac{\sqrt{2}}{2}\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{2}}{2}\)
\(tana=\frac{sina}{cosa}=-1\)
\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)
\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)
\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)
\(=\frac{1}{4}sin3a\)
\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)
\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)
\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)
\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
a/
\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)
b/
\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)
c/
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)
\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)
d/
\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)
e/
\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)
Các câu c, e đều sử dụng kết quả từ câu b
f/
\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)
\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)
\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)
\(=2.\left(-2sin^2x\right)^2=8sin^4x\)
g/
\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)
h/
\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
i/
\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
j/
\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
a/ \(\frac{\pi}{2}\le y\le\pi\Rightarrow cosy< 0\)
\(\Rightarrow cosy=-\sqrt{1-sin^2y}=-\frac{2\sqrt{2}}{3}\)
\(sin2y=2siny.cosy=2.\left(\frac{1}{3}\right).\left(-\frac{2\sqrt{2}}{3}\right)=-\frac{4\sqrt{2}}{9}\)
\(cos\left(\frac{\pi}{3}-y\right)=cos\frac{\pi}{3}cosy+sin\frac{\pi}{3}siny=\frac{\sqrt{3}-2\sqrt{2}}{6}\)
\(tany+5=\frac{siny}{cosy}+5=5-\frac{\sqrt{2}}{4}\)
b/ \(-\frac{\pi}{2}\le a\le9\Rightarrow sina\le0\)
\(\Rightarrow sina=\sqrt{1-cos^2a}=-\frac{4}{5}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=cos^2a-sin^2a=-\frac{7}{25}\)
\(tan2a=\frac{sin2a}{cos2a}=\frac{24}{7}\)
c/ \(\pi\le a\le\frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina\le0\\cosa\le0\end{matrix}\right.\)
\(\Rightarrow cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{1}{2}\Rightarrow sina=-\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left(\sqrt{3}-sin2a\right)sin\frac{2\pi}{3}=\frac{3}{4}\)