Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,
\(7S=7^2+7^3+.......+7^{50}\)
\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)
\(\Rightarrow6S=7^{50}-7\)
\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)
Vậy 6S+7 là lũy thừa của 7
a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)
S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)
S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)
S = 7 + 72.57 + 75.57 + ... + 747.57
S = 7 + 57.(72 + 75 + ... + 747)
S = 7 + 19.3.(72 + 75 + ... + 747)
S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19
=> đpcm
b) S = 7 + 72 + 73 + ... + 748 + 749
7S = 72 + 73 + 74 + ... + 749 + 750
7S - S = 750 - 7 = 6S
6S + 7 = 750 là lũy thừa của 7
=> đpcm
Đề bài bn chép sai, mk sửa lại rùi đó
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
\(S=1+2+2^2+2^3+...+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=3+3\cdot2^2+3\cdot2^4+3\cdot2^6+3\cdot2^8+3\cdot2^{10}\)
\(=3\left(1+2^2+2^4+2^6+2^8+2^{10}\right)⋮3\)
S= (1+2)+22(1+2)+24(1+2)+26(1+2)+28(1+2)+210(1+2)
S=3(1+22+24+26+28+210)
suy ra S chia hết cho 3
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
Đặt A=1+7+72+...+7101
=(1+7)+(72+73)+...+(7100+7101)
=8+72(1+7)+...+7100(1+7)
=8+72.8+...+7100.8
=8(1+72+...+7100)
\(\Rightarrow A⋮8\)
Vậy A\(⋮\)8
Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )
= 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )
= 1. 8 + 7^2 . 8 +....+ 7^100 . 8
= 8( 1+7^2+....+7^100 )
=> A chia hết cho 8
Chúng tỏ rằng :
a) M = 4^10 - 2^18 chia hết cho 3
M = 4^10 - 2^18
M = ( 2^2 )^10 - 2^18
M = 2^20 - 2^18
M = 2^18 . 2^2 - 2^18 . 1
M = 2^18 . 4 - 2^18 . 1
M = 2^18 . ( 4 - 1 )
M = 2^18 . 3 chia hết cho 3
Vậy M chia hết cho 3
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
S = ( 1 + 2 ) + ( 2^2 + 2^3 ) + ( 2^4 + 2^5 ) + ( 2^6 + 2^7 )
S = 3 + 2^2 . ( 1 + 2 ) + 2^4 . ( 1 + 2 ) + 2^6 . ( 1 + 2 )
S = 3 + 2^2 . 3 + 2^4 . 3 + 2^6 . 3
S = 3 . ( 2^2 + 2^4 + 2^6 )
Vi 3 chia het cho 3 nen 3 . ( 2^2 + 2^4 + 2^6 ) chia het cho 3
hay S chia het cho 3
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\)\(S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=3\cdot\left(1+2^2+2^4+2^6\right)⋮3\)
VẬY \(S⋮3\left(đpcm\right)\)
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.