K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

ta có : 5S = 5\(^2\)+5\(^3\)+5\(^4\)+..........+5\(^{2007}\)

5S - S = (5\(^2\)+5\(^3\)+5\(^4\)+.......+5\(^{2007}\))-(5+5\(^2\)+5\(^3\)+...+5\(^{2006}\))

4s=5\(^{2007}\)-5

vậy S=52002

S=(5+5\(^4\))+(5\(^2\)+5\(^5\))+(5\(^3\)+5\(^6\))+....+(5\(^{2003}\)+5\(^{2006}\))

biến đổi được S=126.(5+5\(^2\)+5\(^3\)+...+5\(^{2003}\))

suy ra : S chia hết cho 126

7 tháng 4 2017

tương tự như câu chứng mik chia hết cho 30 mà bạn

 

30 tháng 10 2018

a, tính 5S rồi lấy 5S trừ S là xong

b, chịu

30 tháng 10 2018

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

b)Đề hơi sai sai. Nếu như đề là chứng minh S chia hết cho 155 thì mới làm được =,=

15 tháng 10 2017

5S=5^2+5^3+................+5^2007

=>4S=5^2007-5

=>S=(5^2007-5):4

2 tháng 2 2017

phần a bạn nớ làm đug rùi đó

b,5+5^2+5^3+5^4+...+5^2006

=(5^1+5^4)+(5^2+5^5)+...+(5^2003+5^2006)

=5(1+5^3)+...+5^2003(1+5^3)

=5.126+5^2.126+...+5^2003.126

=126(5+...+5^2003) chia hết cho 126

2 tháng 2 2017

a) S = 5 + 52 + 53 + ...... + 52006

5S = 52 + 53 + ...... + 52006 + 52007

5S - S = (52 + 53 + ...... + 52006 + 52007) - ( 5 + 52 + 53 + ...... + 52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

16 tháng 12 2016

\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)

=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}

n-1-5-115
n-4026

Vậy n = {-4;0;2;6}

S = 5+52+53+...+52006

5S = 52+53+54+...+52007

5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

 

23 tháng 4 2016

Cung minh chia het cho 126

S=(5+5^2+5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^10+5^11+5^12)+...+(5^1999+5^2000+5^2001+2002+2003+2004)

S=(5+5^3)+(5^2+5^5)+(5^3+5^6)+...+(5^2000+5^2003)+(5^2001+5^2004)

S=5.(1+125)+5^2.(1+125)+5^3.(1+125)+...+5^2000.(1+125)+5^2001.(1+125)

S=5.126+5^2.126+5^3.126+...+5^2000.126+5^2001.126

S=126.(5+5^2+5^3+...+5^2000+5^2001) chia het cho 126

Chung minh chia het cho 65 tuong tu nhom 4 so roi dat thua so chung.

23 tháng 4 2016

 Ta có: S = 5 + 52 + 53 + ... + 52004

           S = ( 5 + 53) + ( 52+ 54) +...+ ( 52002 + 52004)

           S = ( 5 + 53) + 5 ( 5 + 53) + ...+ 52001 ( 5 + 53

            S = 2 .65 + 5.2.65 + ...+ 52001.2.65

=> S chia hết cho 65

Chắc là chia hết cho 156 chứ 126 mình không làm được

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

24 tháng 2 2020

S = 5 + 52 + 53 + ....... + 52006

a) Tính S

S = 5 + 52 + 53 + ....... + 52006

5S = 5(5 + 52 + 53 + ....... + 52006)

5S = 52 + 53 + 54 + ....... + 52007

4S = 5S - S

4S = (52 + 53 + 54 + ....... + 52007) - (5 + 52 + 53 + ....... + 52006)

4S = 52007 - 5

S = 4S : 4

S = (52007 - 5) : 4

b) CMR S 126

S = 5 + 52 + 53 + ....... + 52006

S = (5 + 54) + (52 + 55) + .... + (52003 + 52006)

S = 5(1 + 53) + 52(1 + 53) + .... + 52003(1 + 53)

S = 5.126 + 52.126 + .... + 52003.126

S = 126(5 + 52 + .... + 52003) ⋮ 126

S ⋮ 126

24 tháng 2 2020

cảm ơn bạn rất nhiều

18 tháng 4 2017

Ta có:5+5^2+5^3+...+5^2006

=>5S=5^2+5^3+5^4+...+5^2007

=>4S=5^2007-5

=>S=5^2007-5/4

b)Ta có:5+5^2+5^3+...+5^2006

=(5+5^4)+(5^2+5^5)+...+(5^2003+5^2006)

=5.126+5^2.126+...+5^2006.126

=126.(5+5^2+...+5^2006) chia hết cho 126

k cho mình nhé

8 tháng 8 2016

hay giup toi