K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

a, tính 5S rồi lấy 5S trừ S là xong

b, chịu

30 tháng 10 2018

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

b)Đề hơi sai sai. Nếu như đề là chứng minh S chia hết cho 155 thì mới làm được =,=

2 tháng 2 2017

phần a bạn nớ làm đug rùi đó

b,5+5^2+5^3+5^4+...+5^2006

=(5^1+5^4)+(5^2+5^5)+...+(5^2003+5^2006)

=5(1+5^3)+...+5^2003(1+5^3)

=5.126+5^2.126+...+5^2003.126

=126(5+...+5^2003) chia hết cho 126

2 tháng 2 2017

a) S = 5 + 52 + 53 + ...... + 52006

5S = 52 + 53 + ...... + 52006 + 52007

5S - S = (52 + 53 + ...... + 52006 + 52007) - ( 5 + 52 + 53 + ...... + 52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

15 tháng 12 2016

a) \(S=5+5^2+5^3+...+5^{2006}\)

\(5S=5^2+5^3+5^4+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

\(4S=5^{2007}-5\)

\(S=\frac{5^{2007}-5}{4}\)

b) \(S=5+5^2+5^3+...+5^{2006}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+...+5^{2003}\left(1+5^3\right)\)

\(=5\cdot126+5^2\cdot126+...+5^{2003}\cdot126\)

\(=\left(5+5^2+...+5^{2003}\right)\cdot126\) chia hết cho \(126\)

Vậy \(S\) chia hết cho \(126\)

 

 

12 tháng 6 2018

\(S=5+5^2+5^3+....+5^{2006}\)

\(\Rightarrow5S=5^2+5^3+5^4+....+5^{2007}\)

\(\Rightarrow5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-5\)

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

12 tháng 6 2018

Mình cần câu a hơn là cần câu b. Các bạn giúp mình nha. Cảm ơn nhiều <3

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

4 tháng 4 2017

a) \(5S=5^2+5^3+5^4+...+5^{2006}+5^{2007}\)

    \(5S-S=\left(5^2+5^3+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

    \(4S=\left(5^{2007}-5\right)\)

     \(S=\frac{\left(5^{2007}-5\right)}{4}\)

b)\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2003}.\left(1+5^3\right)\)

\(S=5.126+5^2.126+...+5^{2003}.126\)

\(S=126.\left(5+5^2+...+5^{2003}\right)\)

\(126.\left(5+562+...+5^{2003}\right)\)chia hết cho 126

nên \(S\)chia hết cho 126

25 tháng 3 2018

nhóm 2 số lại 1 cặp

1 tháng 9 2015

a, S = 5+52+53+.....+52006

5S = 52+53+54+....+52007

4S = 5S - S = 52007-5

=> S = \(\frac{5^{2007}-5}{4}\)

b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu

1 tháng 9 2015

Trong câu hỏi tương tự có đó bn.

**** cho mình đi.

13 tháng 1 2015

Bạn tham khảo thử nhé :

a)         S= 5 + 52 + 53 + 5+ ............ + 52005 + 52006                                   => 5S=       5+ 5+ 5+ 5+ ............ + 52006 + 52007                            => 5S - S= 52007 - 5                                                                                   => 4S= 52007 - 5                                                                                        =>   S= 52007 - 5       /       4

Mình nghĩ bạn nên xem lại đề câu b đi. Hình như là chứng minh S chia hết cho 156 đó, chứ 126 mình ko làm được. 

 

30 tháng 10 2016

a, Ta có 5S = 52 + 53 +54 +………+52007
( 5S –S = (52 + 53 +54 +………+52007) – (5 + 52 + 53 + ………+ 52006)
( 4S = 52007-5
Vậy S = 52002
b, S = (5 + 54) + (52 + 55) +(53 + 56) +……….. + (52003 +52006)
Biến đổi được S = 126.(5 + 52 + 53 +………+ 52003)
Chứng tỏ S chia hết 126.

28 tháng 10 2016

MÌNH TRẢ LỜI ĐƯỢC NHƯNG KHI MÌNH TRẢ LỜI XONG NHỚ K CHO MÌNH 3 NHE

25 tháng 10 2016

bhhhhhhhhhhhh