Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)
\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)
a) S= 1+31 +32 +33 +............+398
S=(1+ 3+ 32) +...............+ (396 +397 +398)
S= 13+..............+396x(1+3+33)
S= 13+...............+396x13
S=13x(1+..........396)
Vì 13x(1+...........396) : 13 thì hết nên => S chia hết cho 13
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Cho Mình Tích Nha
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Ta có :F = 3^1 + 3^2 + 3^3 + ... + 3^100
nên 3F = 3^2 + 3^3 + 3^4 + ... + 3^101 => 3F - F = 3^101 - 3
Do đó 2F + 3 = 3^101 - 3 + 3 = 3^101 = 3^100.3 = (3^50)^2.3 không là số chính phương, vì 3 không phải là số chính phương.
Bài 1 : Ta có ;\(F=3^1+3^2+3^3+...+\)\(3^{100}\)
nên \(3F=3^2+3^3+3^4+...+3^{101}\)\(\Rightarrow3F-F=3^{101}-3\)
Do đó : \(2F+3=3^{101}-3+3=3^{101}=3^{100}.3=\left(3^{50}\right)^2.3\)không là số chính phương ,vì 3 không phải là số chính phương
Bài 2 :Gỉa sử H có 81 ước
Vì số lượng các ước của H là 81 ( là số lẻ ) nên H là số chính phương (1)
Mặt khác :tổng các chữ số của H là :
\(1+2+3+...+9+\left(1+0\right)+\left(1+1\right)+\left(1+2\right)\)
Vì \(51⋮3\)nhưng 51 không chia hết cho 9 nên H chia hết cho 3 nhưng H không chia hết cho 9 ,do đó H không là số chính phương :mâu thuẫn với (1)
Vậy H khong thể có 11 ước
Chúc bạn học tốt ( -_- )
Bài 1 :
F = 31 + 32 + ... + 3100
=> 3F = 32 + 33 + ... + 3101
=> 2F = ( 32 + 33 + ... + 3101 ) - ( 31 + 32 + ... + 3100 ) = 3101 - 31
=> 2F + 3 = 3101 = 3100 . 3 = ( 350 )2 . 3 ko là số chính phương vì 3 ko là số chính phương
a)
\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)
b)
Tính S:
\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.
c)
Ta có \(S=\frac{3^{2017}-3}{2}\)
\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)
Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0
\(S=3+3^2+3^3+3^4+...+3^{2016}\)
\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2017}-3\)
\(S=\frac{3^{2017}-3}{2}\)
Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)
Vậy 2S + 3 là một lũy thừa của 3 (đpcm)
a) Ta có: \(S=1+3+3^2+3^3+...+3^{98}\)
\(3S=3+3^2+3^3+3^4+...+3^{99}\)
\(3S-S=3^{99}-1\)
Hay \(2S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b) Ta có: \(2S=3^{5x-1}-1\)
\(\Rightarrow3^{99}-1=3^{5x-1}-1\)
\(\Rightarrow3^{99}=3^{5x-1}\)
\(\Rightarrow5x-1=99\)
\(\Rightarrow5x=100\)
\(\Rightarrow x=20\)
Hok tốt nha^^
Ta có : \(S=3+3^2+3^3+...+3^{100}\)
=> \(3S=3^2+3^3+3^4+...+3^{101}\)
\(2S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2S=3^{101}-3\)
\(=>2S+3=3^{101}-3+3=3^{101}\)
\(=\left(3^4\right)^{25}\cdot3\)
\(=\left(...1\right).3\)
\(=\left(...3\right)\)
Vậy \(2S+3\) không là số chính phương (đpcm)