K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

8 tháng 1 2017

bạn thay n=10

kq=385

8 tháng 1 2017

bạn ơi đây là vòng mấy vậy?

3 tháng 3 2017

\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\\xy+xz+yz=-\dfrac{1}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x^4+y^4+z^4+2\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]=1\\xy+xz+yz=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2+2\left[xyz\left(x+y+z\right)\right]=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4.\dfrac{1}{4}\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow2\left(x^4+y^4+z^4\right)=2-1=1\)

3 tháng 2 2017

\(A=\frac{6x^2+8x+7+x\left(x-1\right)-6\left(x^2+x+2\right)}{\left(x-1\right)\left(x^2+x+1\right)} \)

\(A=\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x-1}\Leftrightarrow\frac{1}{4A}\)

Ta có: \(A=\frac{1}{4A}\)

\(4A^2=1\)

\(A^2=\frac{1}{4}\)

\(\Rightarrow A=\sqrt{\frac{1}{4}}=\frac{1}{2}\\ \)

hoặc \(=-\frac{1}{2}\)

3 tháng 2 2017

mình nhầm phần đầu

phải là: \(A=\frac{6x^2+8x+7+x\left(x-1\right)-6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)mới đúng

cho mình sorry

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z