K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

Đặt $\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}=k$

$\Rightarrow x=7k-10; y=9k-6; z=27-11k$

Khi đó:

$3x^2+y^2=199$

$\Rightarrow 3(7k-10)^2+(9k-6)^2=199$

$\Rightarrow 228k^2-528k+336=199$

$\Rightarrow 228k^2-528k+137=0$

Số khá xấu, không biết bạn có viết nhầm đề không?

26 tháng 2 2017

Giải:
Ta có: \(3x^3+7=199\)

\(\Rightarrow3x^3=192\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x=4\)

\(\Rightarrow\frac{4+10}{7}=2=\frac{y+6}{9}=\frac{27-z}{11}\)

+) Xét \(\frac{y+6}{9}=2\Rightarrow y=12\)

+) Xét \(\frac{27-z}{11}=2\Rightarrow z=5\)

\(\Rightarrow x+y+z=2+12+5=19\)

Vậy x + y + z = 19

26 tháng 2 2017

@Nguyễn Huy Tú sao câu nèo mình cũng gặp bạn vậy

9 tháng 4 2020

cảm ơn bạn nhiều, bạn làm gần hết bài rồi

9 tháng 4 2020

Không có gì đâu bạn

15 tháng 3 2019

a,-200 x10 t10z3

b,\(\frac{-5}{4}\)x11 y5 z4

c,\(\frac{2}{15}\)x6 y6 z9

d,\(\frac{1}{7}\)x10 y6 z7

e,-4z6 y10 z6

9 tháng 7 2015

2) Theo đề được: \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{5x}{25}=\frac{3y}{21}\) 

 Áp dụng t/c dãy tỉ số = nhau được:

 \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{3x-4y}{15-28}=\frac{3x-4y}{-13}\)

và \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{2z+3y-5x}{18+21-25}=\frac{2z+3y-5x}{14}\)

Vì \(\frac{3x-4y}{-13}=\frac{2z+3y-5x}{14}\) nên \(\frac{3x-4y}{2z+3y-5x}=\frac{-13}{14}\)

9 tháng 7 2015

1) Ta có: \(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\) hay\(\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)

Do đó: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2\) hay \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau được:

 \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

=> x=1 ; y=2 ; z=3

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:
1.

\((-2x^4y^3z^7)^2(\frac{1}{4}xy^5)(-3x^2yz)^3(\frac{-1}{27}x^3yz^2)\)

\(=(4x^8y^6z^{14})(\frac{1}{4}xy^5)(-27x^6y^3z^3)(-\frac{1}{27}x^3yz^2)\)

\(=(4.\frac{1}{4}.-27.\frac{-1}{27})(x^8.x.x^6.x^3)(y^6.y^5.y^3.y)(z^{14}.z^3.z^2)\)

\(=x^{18}.y^{15}.z^{19}\)

2.

\(=(\frac{-1}{3}.\frac{4}{5}.\frac{-27}{10})(x.x^5.x^2)(y^2.y^6.y)(z.z.z^4)\)

\(=\frac{18}{25}.x^8.y^9.z^6\)

3.

\(=(49.x^{10}y^2z^4)(\frac{-1}{4}.x^3yz^7)(\frac{8}{21}x^5z^4)\)

\(=(49.\frac{-1}{4}.\frac{8}{21})(x^{10}.x^3.x^5)(y^2.y)(z^4.z^7.z^4)\)

\(=\frac{-14}{3}.x^{18}.y^3.z^{15}\)

4.

\(=(\frac{-1}{64}.x^8.y^9.z^{12})(4x^2y^2z^4)(\frac{-5}{3}x^4yz)\)

\(=(\frac{-1}{64}.4.\frac{-5}{3})(x^8.x^2.x^4)(y^9.y^2.y)(z^{12}.z^4.z)\)

\(=\frac{5}{48}.x^{14}.y^{12}.z^{17}\)

5.

\(=(\frac{1}{16}.x^8.y^4z^2)(-8xyz^2).(-\frac{1}{2}x^4yz)\)

\(=(\frac{1}{16}.-8.\frac{-1}{2})(x^8.x.x^4)(y^4.y.y)(z^2.z^2.z)\)

\(=\frac{1}{4}.x^{13}.y^6.z^5\)