K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

3 tháng 10 2019

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)  => 

1 tháng 10 2016

g) Đặt k = \(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\)

=> \(\begin{cases}x-1=2k\\y-2=3k\\z-3=4k\end{cases}\)

=> \(\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}\)

=> x - 2y + 3z = 2k+1 - 6k - 4 + 12k + 9 = 8k + 6

=> 8k + 6 = 14

=> k = 1

=> \(\begin{cases}x=2\\y=5\\z=7\end{cases}\)

1 tháng 10 2016

Nguyễn Huy Thắng Hoàng Lê Bảo Ngọc giúp câu h với 

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

20 tháng 11 2018

QUI đồng lên rồi tính

20 tháng 11 2018

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)

\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Xét: 

\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)

Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)

\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)

Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)

Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)

7 tháng 4 2017

Theo đề ta có

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{\left(12x-15y\right)+\left(20z-12x\right)+\left(15y-20z\right)}{7+9+11}\)

\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

=>12x=15y          =>12x=15y=20z

    20z=12x

=>\(\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)

=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)

=>x=4.5=20

y=4.4=16

z=4.3=12

18 tháng 1 2019

                           Giải

Áp dụng tính chất của dãy các tỉ số bằng nhau ta có :

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15x+20z-12x+15y-20z}{7+9+11}\)\(=\frac{0}{27}=0\)

\(\Rightarrow12x=15y=20z\)

\(\Rightarrow\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Lại áp dụng tính chất của dãy các tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{48}{5+4+3}=\frac{48}{12}=4\)

\(\Rightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\\z=3.4=12\end{cases}}\)