K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2020

Bài làm

Đặt \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=-4k\\y=-7k\\z=3k\end{cases}}\)

=> \(A=\frac{-2x+y+5z}{2x-3y-6z}=\frac{-2\cdot\left(-4k\right)-7k+5\cdot3k}{2\cdot\left(-4k\right)-3\cdot\left(-7k\right)-6\cdot3k}=\frac{8k-7k+15k}{-8k+21k-18k}=\frac{16k}{-5k}=-\frac{16}{5}\)

1 tháng 12 2020

Đặt \(x=-4k;y=-7k;z=3k\)

\(A=\frac{-2x+y+5z}{2x-3y-6z}=\frac{-2\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)

\(=\frac{8k-7k+15k}{-8k+21k-18k}=\frac{16k}{-5k}==-\frac{16}{5}\)

#)Giải :

a) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)

b) Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{7}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=30\\z=42\end{matrix}\right.\)

c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{12x}{18}=\frac{12y}{6}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+5}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)

\(\left\{{}\begin{matrix}\frac{12x}{18}=12\\\frac{12y}{16}=2\\\frac{12z}{15}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

21 tháng 6 2019

Áp dụng tính chất của dãy tỉ số bằng nhau:

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)(vì \(5x+y-z=28\))

\(x=20;y=12;z=42\)

b) \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)(vì \(x-y+z=32\))

\(x=20;y=30;z=42\)

c) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

⇒ x= -18; y= -24; z= -30

d) \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

⇒ x=18; y=16; z=15

16 tháng 7 2017

Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)

           \(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)

Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)

16 tháng 7 2017

b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)

=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)

=> k = -2;2

+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)

                 \(\frac{z}{7}=2\Rightarrow z=14\)

+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)

                 \(\frac{z}{7}=2\Rightarrow z=-14\)

Vậy................................

24 tháng 7 2017

a) \(\frac{x+1}{2x+6}\)+\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x+1}{2\left(x+3\right)}\)\(\frac{2x+3}{x\left(x+3\right)}\)

\(\frac{x\left(x+1\right)}{2x\left(x+3\right)}\)\(\frac{2\left(2x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)

\(\frac{x+2}{2x}\)

b) \(\frac{x-1}{x}\)\(\frac{x+2}{2}\)

\(\frac{2\left(x-1\right)}{2x}\)\(\frac{x\left(x+2\right)}{2x}\)

\(\frac{2x-2+x^2+2x}{2x}\)

\(\frac{x^2+4x-2}{2x}\)

c) \(\frac{1}{x+y}\)\(\frac{-1}{x-y}\)\(\frac{2x}{x^2+y^2}\)

\(\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)+\(\frac{-\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)\(\frac{2x\left(x-y\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)}\)

\(\frac{x^3+xy^2-x^2y-y^3-x^3-xy^2-xy^2-y^3+2x^3+2x^2y-2x^2y+2xy^2}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^3+xy^2-x^2y-2y^3}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(2x^3-2y^3\right)-\left(x^2y-xy^2\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{\left(x-y\right)\left(2x^2+2xy+2y^2-xy\right)}{\left(x^2+y^2\right)\left(x^2-y^2\right)}\)

\(\frac{2x^2+xy+2y^2}{\left(x+y\right)\left(x^2+y^2\right)}\)

e) = \(\frac{3x^2-6xy+3y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(\frac{3\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

=\(\frac{3x-3y}{x^2+xy+y^2}\)

( Mình bận rồi, lát làm câu d nhé)

4 tháng 5 2018

Ta có : \(\frac{5z-7y}{3}=\frac{7x-3z}{5}=\frac{3y-5x}{7}=\frac{3\left(5z-7y\right)}{9}=\frac{5\left(7x-3z\right)}{25}=\frac{7\left(3y-5x\right)}{49}\)

\(=\frac{15z-21y}{9}=\frac{35x-15z}{25}=\frac{21y-35x}{49}=\frac{15z-21y+35x-15z+21y-35x}{9+25+49}=0\)

\(\Rightarrow\hept{\begin{cases}5z-7y=0\\7x-3z=0\\3y-5x=0\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}}\) (đpcm)

19 tháng 10 2021

Mik giải đc bài dưới thui ạ
Từ x + z = 2y ta có:

x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z

Vậy nếu: 2x−y5=3y−2z152x−y5=3y−2z15 thì: 2x – y = 3y – 2z = 0 (vì 5 ≠≠ 15.)

Từ 2x – y = 0 suy ra: x = 12y12y

Từ 3y – 2z = 0 và x + z = 2y. ⇒⇒ x + z + y – 2z = 0 hay  12y12y+ y – z = 0

hay 32y32y - z = 0 hay y = 23z23z. suy ra: x = 13z13z.

Vậy các giá trị x, y, z cần tìm là: {x = 13z13z; y = 23z23z ; với z ∈∈ R }
hoặc {x = 12y12y; y ∈∈ R; z = 32y32y} hoặc {x ∈∈ R; y = 2x; z = 3x}

23 tháng 4 2017

Bạn CM x=y=z=1

Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2

Cuối cùng bạn sẽ kết luận:

Vì 1/2 ≤ 1/2

Nên ...(biểu thức)...≤1/2

23 tháng 4 2017

CM x=y=z kiểu gì vậy???

27 tháng 9 2021

à....cái đó thì mình chưa tính ra được