Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{c}=\frac{c}{b}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
b) \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow ab=c^2\)
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{\left(b-a\right)b+\left(b-a\right)a}{a.\left(a+b\right)}=\frac{\left(b-a\right)\left(b+a\right)}{a.\left(a+b\right)}=\frac{b-a}{a}\)
\(\frac{a}{c}\) = \(\frac{c}{b}\) => c2 = ab
=> \(\frac{a^2+c^2}{b^2+c^2}\) = \(\frac{a^2+ab}{b^2+ab}\) = \(\frac{a.\left(a+b\right)}{b.\left(a+b\right)}\) = \(\frac{a}{b}\)
=> \(\frac{a^2+c^2}{b^2+c^2}\) = \(\frac{a}{b}\)
Có : \(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
Lại có : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a.(a+b)}{b.(a+b)}=\frac{a}{b}\) ( đpcm )
Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)
\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)
Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)
Có: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
=> \(\frac{b^2+c^2}{a^2+c^2}=\frac{b}{a}\)
=> \(\frac{b^2+c^2}{a^2+c^2}-1=\frac{b}{a}-1\)
=> \(\frac{b^2+c^2}{a^2+c^2}-\frac{a^2+c^2}{a^2+c^2}=\frac{b}{a}-\frac{a}{a}\)
=> \(\frac{\left(b^2+c^2\right)-\left(a^2+c^2\right)}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2+c^2-a^2-c^2}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2-a^2+\left(c^2-c^2\right)}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)(điều phải chứng minh)
Theo đề ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-a^2}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(đpmc\right)\)
ta có:
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow ab=c^2\)(1)
Thay (1) vào biểu thức cần chứng minh ta có:
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
Vậy ĐPCM
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
\(\Rightarrow\frac{a^2+b^2}{c^2+b^2}=\frac{a^2}{c^2}=\frac{a^2}{ab}=\frac{a}{b}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)
làm theo cách của BuiHuyen nhưng ko coppy đâu thề tự làm :>
\(=\frac{a}{b}=\frac{c}{b}=>ab=c^2\)(phép vừa tính xong not ghi lại đề)
\(=>\frac{a^2+b^2}{c^2+b^2}=\frac{a^2}{c}=\frac{a^2}{ab}=\frac{a}{b}\)
\(=>\frac{a^2+b^2}{b^2+c^2}=\frac{q}{b}\left(đpcm\right)\)