\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\Leftrightarrow \frac{ab^2+bc^2+ca^2}{abc}=\frac{a^2b+b^2c+c^2a}{abc}\)

\(\Leftrightarrow ab^2+bc^2+ca^2=a^2b+b^2c+c^2a\)

\(\Leftrightarrow ab^2+bc^2+ca^2-a^2b-b^2c-c^2a=0\)

\(\Leftrightarrow ab(b-a)+bc(c-b)+ac(a-c)=0\)

\(\Leftrightarrow ab(b-a)-bc[(b-a)+(a-c)]+ac(a-c)=0\)

\(\Leftrightarrow (b-a)(ab-bc)+(a-c)(ac-bc)=0\)

\(\Leftrightarrow b(b-a)(a-c)-c(a-c)(b-a)=0\)

\(\Leftrightarrow (b-a)(a-c)(b-c)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=a\\a=c\\b=c\end{matrix}\right.\)

Do đó luôn tồn tại hai số bằng nhau (đpcm)

23 tháng 11 2017

\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)

\(\Rightarrow\dfrac{a^2c}{abc}+\dfrac{b^2a}{abc}+\dfrac{c^2b}{abc}=\dfrac{b^2c}{abc}+\dfrac{a^2b}{abc}+\dfrac{c^2a}{abc}\)

\(\Rightarrow\dfrac{a^2c+b^2a+c^2b}{abc}=\dfrac{b^2c+a^2b+c^2a}{abc}\)

\(\Rightarrow a^2c+b^2a+c^2b=b^2c+a^2b+c^2a\)

\(\Rightarrow a^2c+b^2a+c^2b-b^2c-a^2b-c^2a=0\)

\(\Rightarrow\left(a^2c-c^2a\right)+\left(b^2a-a^2b\right)+\left(c^2b-b^2c\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-b+a-a\right)=0\)

\(\Rightarrow ac\left(a-c\right)+ab\left(b-a\right)+bc\left(c-a\right)+bc\left(a-b\right)\)

\(\Rightarrow c\left(a-c\right)\left(a-b\right)+b\left(a-b\right)\left(c-a\right)=0\)

\(\Rightarrow c\left(a-c\right)\left(a-b\right)-b\left(a-b\right)\left(a-c\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}c=b\\a=c\\a=b\end{matrix}\right.\)(Tồn tại ít nhất 2 số bằng nhau)

NV
3 tháng 4 2019

\(abc\ne0\)

\(abc\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)=abc\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

\(\Leftrightarrow a^2c+ab^2+bc^2=b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-b^2c+ab^2-a^2b+bc^2-ac^2=0\)

\(\Leftrightarrow c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ac+bc-ab-c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(c\left(a-c\right)-b\left(a-c\right)\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(c-b\right)\left(a-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) (đpcm)

30 tháng 5 2015

kết quả sẽ ra là

(a-b)(a-c)(b-c)=0

30 tháng 5 2015

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

\(\frac{a^2c}{abc}+\frac{b^2a}{abc}+\frac{c^2a}{abc}=\frac{b^2c}{abc}+\frac{c^2a}{abc}+\frac{a^2b}{abc}\)

\(=>a^2c+b^2a+c^2a=b^2c+c^2a+a^2b\)

Vì \(c^2a=c^2a\)=> \(a^2c+b^2a=b^2c+a^2b\)

=>đpcm, hình như mình giải thiếu điều kiện thì phải 

5 tháng 12 2017

 a/b+b/c+c/a=b/a+c/b+a/c 
<=> a/b-b/a+b/c-c/b+c/a-a/c=0 
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0 
<=> ac(a-c)+bc(c-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0 
<=> (a-c)(a-b)c+(a-b)(c-a)b=0 
<=> (a-b)(c-a)(b-c)=0 
<=> a=b hay c=a hay b=c 
Vậy trong ba số a,b,c tồn tại 2 số =nhau

29 tháng 1 2021

Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)

=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)

=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)

Khi b - a = 0

=> (b - a)(a - c)(b + c) = 0 (1)

Khi b - a \(\ne0\)

=> ab = -(a - b - c).c

=> ab = -ac + bc + c2 

=> ab + ac - bc - c2 = 0

=> a(b + c) - c(b + c) = 0

=> (a - c)(b + c) = 0

=> (b - a)(a - c)(b + c) = 0 (2)

Từ (1)(2) => (b - a)(a - c)(b + c) = 0

=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0

=> a = b hoặc a = c hoặc b = -c

Vậy tồn tại 2 số bằng nhau hoặc đối nhau

5 tháng 12 2020

xin lỗi, viết nhầm, a+b+c=1 chứ ko phải bằng 0 nha

DD
5 tháng 12 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ca}{abc}=1\Rightarrow ab+bc+ca=abc\)\

Ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

                                                                 \(=ab+bc+ca-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Từ đây ta suy ra đpcm. 

2 tháng 3 2020

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2}{\left(a+b\right)\left(a+c\right)}+\frac{a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)

Tương tự ta có:

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{a+b}+\frac{b-a}{b+c}\left(2\right)\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)

(1)(2)(3) => ĐPCM

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{4-2}{2}=1\) (do \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) )

\(\Leftrightarrow \frac{a+b+c}{abc}=1\)

\(\Leftrightarrow a+b+c=abc\)

Do đó ta có đpcm.

26 tháng 11 2017

nhưng cô ơi trong đề chỉ nói 1/a+1/b+1/c=2 chứ có phải 1/a^2+1/b^2+1/c^2=2 đâu cô?

14 tháng 7 2018

Ta có :

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\)

\(\Rightarrow a^2c+ab^2+bc^2\)

\(=b^2c+a^2b+ac^2\)

\(\Rightarrow a^2\left(c-b\right)-a\left(c^2-b^2\right)+bc\left(c-b\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a^2-ac-ab+bc\right)=0\)

\(\Rightarrow\left(c-b\right)\left(a-b\right)\left(a-c\right)=0\)

Theo phân tích trên ta được tồn tại các thừa số \(\hept{\begin{cases}c-b\\a-c\\a-b\end{cases}}=0\)

Vậy trong ba số a , b , c tồn tại 2 số giống nhau  ( đpcm)

4 tháng 9 2018

ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c=\frac{ba+ac+ab}{abc}\)

mà abc = 1

\(\Rightarrow a+b+c=ba+ac+ab\)

Lại có: (a-1).(b-1).(c-1)

 = (ab - a - b + 1) . ( c-1)

= abc - ac - bc + c - ab + a + b - 1

= ( abc - 1) +( a+ b + c ) - ( ac + bc + ab)

= (  1 - 1) + ( a + b + c)  - ( a + b + c)

= 0 

=> (a-1).(b-1).(c-1) = 0

=> trong 3 số a;b;c tồn tại một số bằng 1