Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(a^2=b.c\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{a^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{a^2}=\frac{a^2+b^2}{c^2+a^2}=\frac{a^2-b^2}{c^2-a^2}\)
Vì \(\frac{a^2+b^2}{c^2+a^2}=\frac{a^2-b^2}{c^2-a^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+a^2}{c^2-a^2}\)
\(a^2=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)
\(\left(1\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}\)
\(\left(2\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)( Đổi chỗ trung tỉ ) (ĐPCM)
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)
\(\Rightarrow\frac{a+b}{c+a}=\frac{b}{a}=\frac{a+b-b}{c+a-a}=\frac{a}{c}\Rightarrow\frac{b}{a}=\frac{a}{c}\Rightarrow a^2=bc\)
Câu a)
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
\(\Leftrightarrow\left(a+b\right).\left(c-2d\right)=\left(a-2b\right).\left(c+d\right)\)
\(\Leftrightarrow a.\left(c-2d\right)+b.\left(c-2d\right)=a.\left(c+d\right)-2b.\left(c+d\right)\)\(\)
\(\Leftrightarrow ac-2ad+bc-2bd=ac+ad-2bc-2bd\)
\(\Leftrightarrow bc-2ad=ad-2bc\)
\(\Leftrightarrow bc+2bc=ad+2ad\)
\(\Leftrightarrow3bc=3ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Câu b)
Ta có : \(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\)
\(\Leftrightarrow a^2+2ad+d^2=b^2+2bc+c^2\) (*)
Lại có : \(a^2+d^2=b^2+c^2\)
\(\Leftrightarrow2ad=2bc\) ( bớt cả hai vế của đẳng thức (*) đi \(a^2+d^2\) và \(b^2+c^2\))
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Vậy : 4 số a, b, c, d có thể lập được 1 tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).
Câu 2:A= 75.(42004+42003+.....+42+4+1)+25=75.|(42005-1):3+25=25.(42005-1+1)=25.42005chia hết 100
Suy ra A chia hết cho 100
CHÚC BẠN HỌC TỐT NHÉ !!!!!!!!!
thay \(a^2=b.c\)vào biểu thức, ta có:
\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(c+b\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
Đặt:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk\)
\(\Rightarrow c=dk\)
Thế vào vế phải:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\frac{bk^2+b^2}{dk^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
Thế vào vế trái:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}=\frac{b}{d}\)
=> Vế phải = vế trái
=> ĐPCM