K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Đặt \(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}=k\) =>a=5k,b=3k,c=2k

thay vào ab=c^2+11:

15k^2=4k^2+11

11k^2=11

=>k=1 hoặc k=-1

=>a=5,b=3,c=2 hoặc a=-5,b=-3,c=-2.

12 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{\left(b+c+1\right)+\left(a+c+2\right)+\left(a+b-3\right)}{a+b+c}\)

                                                                         \(=\frac{2.\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

\(\Rightarrow a+b+c=\frac{1}{2}\)\(\Rightarrow\hept{\begin{cases}b+c=\frac{1}{2}-a\\a+c=\frac{1}{2}-b\\a+b=\frac{1}{2}-c\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-a+1}{a}=\frac{\frac{1}{2}-b+2}{b}=\frac{\frac{1}{2}-c-3}{c}=2\)

\(\Rightarrow\frac{\frac{3}{2}-a}{a}=\frac{\frac{5}{2}-b}{b}=\frac{\frac{-5}{2}-c}{c}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{3}{2}-a=2a\\\frac{5}{2}-b=2b\\\frac{-5}{2}-c=2c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=\frac{3}{2}\\3b=\frac{5}{2}\\3c=\frac{-5}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{5}{6}\\c=\frac{-5}{6}\end{cases}}\)

Vậy \(a=\frac{1}{2};b=\frac{5}{6};c=\frac{-5}{6}\)

\(\frac{a^2}{1+a+a^2}\)

\(\frac{1}{1+a}\)

\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)

vì a>b nên  \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)

5 tháng 4 2018

Ta có : \(\frac{2a+b+c}{a+b+c}=\frac{a+a+b+c}{a+b+c}=1+\frac{a}{a+b+c}\)

          \(\frac{2b+c+d}{b+c+d}=\frac{b+b+c+d}{b+c+d}=1+\frac{b}{b+c+d}\)

         \(\frac{2c+d+a}{d+a+c}=\frac{c+c+d+a}{d+a+c}=1+\frac{c}{d+a+c}\)

           \(\frac{2d+a+b}{d+a+b}=\frac{d+d+a+b}{d+a+b}=1+\frac{d}{d+a+b}\)

Lại có:

     M       =      \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)

=> M     \(>\frac{a}{a+b+c+d}+\frac{b}{b+c+d+a}+\frac{c}{d+a+c+b}+\frac{d}{d+a+b+c}\)

            \(=\frac{a+b+c+d}{a+b+c+d}=1\)

=> M > 1 (1)

Và :

 M      =       \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)

Mà \(\frac{a}{a+b+c}< 1;\frac{b}{b+c+c}< 1;\frac{c}{d+a+c}< 1;\frac{d}{d+a+b}< 1\)

=> M  \(< \frac{a+d}{a+b+c+d}+\frac{b+a}{b+c+d+a}+\frac{c+b}{d+a+c+b}+\frac{d+c}{a+b+c+d}\)

=> M   \(< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)

=> M   \(< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

=> M< 2 (2)

Từ (1) và (2) ta có 1 < M < 2. => M ko phải là số tự nhiên. Mà 1 là số tự nhiên => A ko phải là số tự nhiên

                              Vậy ..................(đpcm)

5 tháng 4 2018
Lm mỏi hết cả tay, ko nhận k nào thì ...
4 tháng 12 2019

chang hieu "b" ở đâu

4 tháng 12 2019

Sao lại có b ở đâu ra kia bạn

19 tháng 8 2018

1)

\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)

\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)

mà ab = ab; ac > bc ( vì a > b )

=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

28 tháng 11 2016

Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)

                                                                                                            \(=\frac{a+b+c}{6}\)

\(\Rightarrow\) Thay M vào tính

4 tháng 12 2016

Thay M vao tinh sao vay

30 tháng 6 2018

\(\frac{a^2\cdot c^2}{c^2\cdot b^2}=\frac{a}{b}\)

Ta thấy trong phân số thứ nhất thì cả tử và mẫu đều có c2 nên ta lược bỏ thì sẽ được :

\(\frac{a^2}{b^2}=\frac{a}{b}\)( cái này hợp lí )

Cho nên ..................= ............

Tk mh nhé bn , mơn nhìu !!!!

~ HOK TỐT ~

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D