Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)
<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )
<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2
<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0
<=> 2a2 - 4ab + 2b2 \(\ge\) 0
<=> a2 -2ab +b2 \(\ge\) 0
<=> (a-b)2 \(\ge\) 0 ( luôn đúng)
=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
Và dấu bằng xảy ra <=> a = b
e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??
ab−c−ba−c−cb−a=0=>ab−c−ba−c−cb−a=0
=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)
Nhân cả 2 vế với 1b−c1b−c ta được
a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)
Tương tự ta có:
b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)
c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)
Cộng theo vế (1);(2);(3) ta có ĐPCM
Lời giải:
Ta có:
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)
\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)
\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)
Hoàn toàn tương tự:
\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)
\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)
Cộng theo vế các đẳng thức vừa thu được ta có:
\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)
Ta có đpcm.
Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)
\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)
\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)
Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được
\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)
Tương tự ta có:
\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)
\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)
Cộng theo vế (1);(2);(3) ta có ĐPCM
CHÚC BẠN HỌC TỐT.........
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
3) Biến đổi tương đương:
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)
\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)
\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)
\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0
=> (1) đúng
Dấu "=" xảy ra khi a = b = c
4) Ta có: a+b>c ; b+c>a; a+c>b
Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy suy ra được điều phải chứng minh
đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
\(\left(\dfrac{a+b-c}{2}\right)^2+\left(\dfrac{a-b+c}{2}\right)^2+\left(\dfrac{-a+b+c}{2}\right)^2\)
\(=\left(\dfrac{4m-2c}{2}\right)^2+\left(\dfrac{4m-2b}{2}\right)^2+\left(\dfrac{4m-2a}{2}\right)^2\)
\(=\left(2m-c\right)^2+\left(2m-b\right)^2+\left(2m-a\right)^2\)
\(=4m^2-4mc+c^2+4m^2-4mb+b^2+4m^2-4ma+a^2\)
\(=a^2+b^2+c^2+12m^2-4m\left(a+b+c\right)\)
\(=a^2+b^2+c^2+12m^2-4m\cdot4m\)
\(=a^2+b^2+c^2+12m^2-16m^2\)
\(=a^2+b^2+c^2-4m^2\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)