Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, + I là trung điểm BC nên BI=IC=BC2=2a:2=a=AB=CDBI=IC=BC2=2a:2=a=AB=CD
+ CM: △ABI=△DCI△ABI=△DCI (cgc)
~~> AI=DIAI=DI (2 cạnh tương ứng) ~~> △IAD△IAD cân ở I ~~> A1ˆ=D1ˆA1^=D1^ (1)
+ △IAD△IAD có Hk là đường trung bình nên HK // AD (2)
+ Từ (1) và (2) ta có AHKDAHKD là hình thang cân
b, + △ABI△ABI vuông ở B theo pytago có BI2+BA2=AI2BI2+BA2=AI2. Hay AI2=2a2⟹AI=2a2−−−√=DIAI2=2a2⟹AI=2a2=DI (theo phần a AI=DI)
+ H là trung điểm AI nên : AH=AI2=2a2−−−√2AH=AI2=2a22
+ Tương tự có KD=2a2−−−√2KD=2a22
+ Ta có AD=BC=2aAD=BC=2a
+ HK là đường trung bình△IAD△IAD nên HK=AD2=aHK=AD2=a
+ Chu vi hình thang HKDA là KD+DA+AH+HD=2a2−−−√2+2a2−−−√2+a+2a=2a2−−−√+3a
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)
a: Xét tứ giác AHCN có
M là trung điểm của AC
M là trung điểm của HN
Do đó: AHCN là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCN là hình chữ nhật
Suy ra: AC=HN
b: Xét ΔABC có
H là trung điểm của BC
O là trung điểm của AB
Do đó;HO là đường trung bình
=>HO//AC và HO=AC/2
=>HO=AM và HO//AM
=>AOHM là hình bình hành
mà AO=AM
nên AOHM là hình thoi
a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật
b) vì O đối dứng H qua M => OM=MH
E đối xứng H qua N => HN=NE
xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE
=> MN//DE lại có MA // NE => MAEN là hình bình hành
c) có MAEN là hình bình hành => MN=AE
MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)
=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE
a: Xét tứ giác IBCK có
O la trung điểm chung của IC và BK
nên IBCK là hình bình hành
mà góc CBI=90 đọ
nen IBCK là hình chữ nhật
b: Xét ΔBHA có
I,M lần lượt là trung điểm của AB và AH
nên IM là đường trung bình
=>IM//BH
hay IM vuông góc với MC
=>ΔIMC vuông tại M
mà MO là đường trung tuyến
nên MO=IO=IC/2
hay IC=2MO