Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác HBA có:
góc B chung
BAC=BHA ( =90 )
=> tam giác ABC đồng dạng với tam giác HBA
b) Xét tam giác ABC và tam giác HAC có:
BAC=AHC ( =90)
góc C chung
=> tam giác ABC đồng dạng với tam giác HAC
c) Xét tam giác HBA và tam giác HAC có:
góc A chung
BHA=AHC ( =90 )
=> tam giác HBA đồng dạng với tam giác HAC
=> \(\dfrac{HB}{AH}=\dfrac{HA}{HC}\)
=> AH^2=HB.HC
Theo câu a) ta có: \(AH^2=AI.AB\left(1\right)\)
Xét tam giác AHK và tam giác ACH có:
góc A chung; góc AKH = góc AHC = 900
=> tam giác AHK đồng dạng với tam giác ACH (g-g)
=>\(\dfrac{AK}{AH}=\dfrac{AH}{AC}\Rightarrow AK.AC=AH^2\left(2\right)\)
Từ (1)(2) => \(AI.AB=AK.AC\Rightarrow\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét tam giác AIK và tam giác ABC có:
góc A chung; \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
=> Tam giác AIK đồng dạng với tam giác ACB (c-g-c)
a) Xét tam giác AIH và tam giác AHB có:
góc BAH chung; góc AIH = góc AHB (= 900)
=> tam giác AIH = tam giác AHB (g-g)
\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AB}{AH}\Rightarrow AH^2=AI.AB\)
a) Xét \(\Delta HAC\)và \(\Delta ABC\)có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\) \(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
\(\Delta ABC\) có \(AD\)là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)
c) Xét \(\Delta CED\)và \(\Delta CAB\)có:
\(\widehat{CED}=\widehat{CAB}=90^0\)
\(\widehat{ECD}\) chung
suy ra: \(\Delta CED~\Delta CAB\)
\(\Rightarrow\)\(\frac{CE}{AC}=\frac{ED}{AB}\)
\(\Rightarrow\)\(CE.AB=AC.ED\) (đpcm)
thực ra mk cần nhất là ý d còn lại mk tự lm theo cách của mk rùi có bn nào tốt bụng giúp mk vs
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
A B C H
\(Xét\Delta ABC\) VÀ \(\Delta HBA\) CÓ :
\(\widehat{A}\)= \(\widehat{AHB}\)= 90 ĐỘ
\(\widehat{B}\)CHUNG
\(\Rightarrow\)\(\Delta ABC\) ĐỒNG DẠNG \(\Delta HBA\)(g.g)
b, XÉT \(\Delta ABC\) VÀ \(\Delta HAC\)CÓ
\(\widehat{A}\)=\(\widehat{AHC}\) =90 ĐỘ
\(\widehat{C}\) CHUNG
\(\Rightarrow\)\(\Delta ABC\)ĐỒNG DẠNG \(\Delta HAC\)(G.G)
C, TA CÓ : \(\Delta ABC\)ĐỒNG DẠNG \(\Delta HBA\)(THEO CÂU a)
\(\Delta ABC\)ĐỒNG DẠNG \(\Delta HAC\)(THEO CÂU b)
\(\Rightarrow\)\(\Delta HBA\) ĐỒNG DẠNG \(\Delta HAC\)(THEO TÍNH CHẤT BẮC CẦU)
\(\Rightarrow\)\(\frac{HB}{HA}\)= \(\frac{HA}{HC}\)
\(\Rightarrow\) HA.HA= HB.HC
\(\Rightarrow\)\(^{HA^2}\)=HB.HC