Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\Delta\)ABC và \(\Delta\)DEF ta có:
AB=DE(AEDB là hình bình hành)(1)
FE=BC(BFEC là hình bình hành)(2)
AC=FD(AFDC là hình bình hành)(3)
Từ 123 => \(\Delta\)ABC = \(\Delta\)DEF
b) Ta có BS=SE; CS=SF; M\(\in\)BC
=>N\(\in\)FE
=>EFN thẳng hàng
a: Xét tứ giác ABDE có
M là trung điểm của AD
M là trung điểm của BE
DO đó: ABDE là hình bình hành
Suy ra: AE//BD
hay AE//BC(1)
Xét tứ giác AFDC có
M là trung điểm của AD
M là trung điểm của CF
Do đó: AFDC là hình bình hành
SUy ra: AF//DC
hay AF//BC(2)
Từ (1) và (2) suy ra E,A,F thẳng hàng
b: Xét tứ giác BFEC có
M là trung điểm của BE
M là trung điểm của CF
Do đó: BFEC là hình bình hành
Suy ra: BF//EC
Ta có hình vẽ:
B C A D E N M
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng
A B C S D E F
a) Xét \(\Delta BAS\)và \(\Delta EDS\)có:
\(SA=SD\)
\(\widehat{ASB}=\widehat{DSE}\)(Đối đỉnh) \(\Rightarrow\Delta BAS=\Delta EDS\left(c.g.c\right)\)\(\Rightarrow AB=DE\)(2 cạnh tương ứng)
\(SB=SE\)
Xét \(\Delta BSC\)và \(\Delta ESF\)có:
\(SC=SF\)
\(\widehat{BSC}=\widehat{ESF}\)(Đối đỉnh) \(\Rightarrow\Delta BSC=\Delta ESF\left(c.g.c\right)\Rightarrow BC=EF\)(2 cạnh tương ứng)
\(SB=SE\)
Xét \(\Delta ASC\)và \(\Delta DSF\)có:
\(SC=SF\)
\(\widehat{ASC}=\widehat{DSF}\)(Đối đỉnh) \(\Rightarrow\Delta ASC=\Delta DSF\left(c.g.c\right)\Rightarrow AC=DF\)(2 cạnh tương ứng)
\(SA=SD\)
Xét \(\Delta ABC\)và \(\Delta DEF\)có:
\(AB=DE\)
\(BC=EF\) \(\Rightarrow\Delta ABC=\Delta DEF\left(c.c.c\right)\)(ĐPCM)
\(AC=DF\)
b) Xét \(\Delta BMS\)và \(\Delta ENS\)có:
\(SM=SN\)
\(\widehat{BSM}=\widehat{ESN}\)(Đối đỉnh) \(\Rightarrow\Delta BMS=\Delta ENS\left(c.g.c\right)\Rightarrow\widehat{BMS}=\widehat{ENS}\)(2 góc tương ứng)
\(SB=SE\)
Xét \(\Delta CMS\)và \(\Delta FNS\)có:
\(SM=SN\)
\(\widehat{MSC}=\widehat{NSF}\)(Đối đỉnh) \(\Rightarrow\Delta CMS=\Delta FNS\left(c.g.c\right)\Rightarrow\widehat{CMS}=\widehat{FNS}\)(2 góc tương ứng)
\(SC=SF\)
Ta có: \(\widehat{BMS}=\widehat{ENS}\)và \(\widehat{CMS}=\widehat{FNS}\)\(\Rightarrow\widehat{BMS}+\widehat{CMS}=\widehat{ENS}+\widehat{FNS}\)
Mà \(\widehat{BMS}\)và \(\widehat{CMS}\)kề bù \(\Rightarrow\widehat{ENS}+\widehat{FNS}=180^0\Rightarrow\widehat{FNE}=180^0\)
\(\Rightarrow E,F,N\)là 3 điểm thẳng hàng (ĐPCM).