\(\Delta\) ABC nhọn . Về phía ngoài \(\Delta\) ABC vẽ
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

MAX khó quá!!!!!!!!!!!!!!!!

câu này nâng cao

26 tháng 3 2017

Câu 2:

a) Ta có:\(\frac{a^2+a+3}{a+1}=\frac{a.a+a+3}{a+1}=\frac{a.\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

Vì a là số nguyên => (a+1) thuộc Ư(3)=(1;-1;3;-3)

Ta có bảng sau:

a+11-13-3
a0-22-4

Vậy a=(0;-2;2;-4)

5 tháng 4 2017

Bạn tự vẽ hình nhé :

a)\(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}\).\(\Delta BMI,\Delta CNI\)lần lượt vuông tại M,N có : BI = CI (I là trung điểm BC) ;\(\widehat{B}=\widehat{C}\)(cmt)

\(\Rightarrow\Delta BMI=\Delta CNI\left(ch-gn\right)\)

b)\(\Delta AIB,\Delta AIC\)có AI chung ; AB = AC (\(\Delta ABC\)cân tại A) ; IB = IC nên\(\Delta AIB=\Delta AIC\left(c.c.c\right)\)

=>\(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng) mà\(\widehat{AIB}+\widehat{AIC}=180^0\)(kề bù)\(\Rightarrow\widehat{AIC}=90^0\)

Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta AIC,\Delta AIN,\Delta INC\),ta lần lượt có :

AI2 + IC2 = AC2 ; AN2 = AI2 - IN2 ; NC2 = IC2 - IN2

=> AC2 - AN2 - NC2 = AI2 + IC2 - AI2 + IN2 - IC2 + IN2 = 2IN2

c) BM = CN (2 cạnh tương ứng của\(\Delta BMI=\Delta CNI\)) mà AB = AC

=> AB - BM = AC - CN hay AM = AN => \(\Delta AMN\)cân tại A

5 tháng 4 2017

A B C I M N

a)\(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\widehat{MBI}=\widehat{NCI}\right)\)

Xét \(\Delta BMI\)\(\Delta CNI:\hept{\begin{cases}\widehat{BMI}=\widehat{CNI}=90^0\\BM=CN\\\widehat{MBI}=\widehat{NCI}\end{cases}\Rightarrow\Delta BMI=\Delta CNI}\)(cạnh huyền góc nhọn)

b) Xét \(\Delta CNI:\widehat{CNI}=90^0\Rightarrow\)\(IN^2=IC^2-CN^2\left(Pytago\right)\left(1\right)\)

          \(\Delta AIN:\widehat{INA}=90^0\Rightarrow IN^2=IA^2-AN^2\left(Pytago\right)\left(2\right)\)

   Từ (1) và (2)\(\Rightarrow2IN^2=IC^2-CN^2+IA^2-AN^2=IC^2+IA^2-AN^2-NC^2\left(3\right)\)

Xét \(\Delta AIC:\widehat{AIC}=90^0\)(AI là đường trung tuyến và cũng là đường cao)

\(\Rightarrow AI^2+IC^2=AC^2\left(Pytago\right)\left(4\right)\)

Thay (4) vào 93), ta có: \(2IN^2=AC^2-AN^2-NC^2\left(đpcm\right)\)

c) I là trung điểm của BC=> AI là dường trung tuyến. Mà \(\Delta ABC\)cân tại A=> AI cũng là đường phân giác.

\(\Rightarrow\widehat{MAI}=\widehat{NAI}\)

Xét \(\Delta MAI\)và \(\Delta NAI:\hept{\begin{cases}\widehat{AMI}=\widehat{ANI}=90^0\\AI\\\widehat{MAI}=\widehat{NAI}\end{cases}\Rightarrow\Delta MAI=\Delta NAI}\)(cạnh huyền góc nhọn)

\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A.

Giải hơi muộn nhưng các bạn nhớ nha. 

1 tháng 12 2016

A B C M K E H 1 2 3 1 1 2 1 2 3

Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC

=> ΔAMB và ΔAMC vuông cân và bằng nhau

=> Góc C1= Góc A1

Xét ΔABH và ΔCAK có

BA=AC( ΔABC cân)

Góc B1=Góc A3 ( cùng phụ với góc BAK)

Đều  _|_ AK

=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)

=> Góc BAK = Góc CAK

Mà Góc C1= Góc A1

=> Góc A2= Góc C2 

Xét 2  ΔAHM và ΔCKM có

AM=MC ( đường trung tuyến ứng với cạnh huyền)

Góc A2= Góc C2 (cmt)

AH=CK (vì ΔCAK=ΔABH)

=> ΔAHM = ΔCKM (c.g.c) 

=>HM=MK=>  ΔMHK cân tại M (1)

Ta lại có Góc M1= Góc M2

mà Góc M1+góc M3=90o 

=> Góc M2+ Góc M3 = Góc HMK =90o (2)

Từ (1) Và (2) => ΔMHK vuông cân tại M

1 tháng 12 2016

1,Ta có: Tam giác ABC là tam giác vuông cân 

=> AB=AC 

Mặt khác có: 

mà  => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K  

Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿

=>BH=AK﴾đpcm﴿

2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao

Mặt khác: 

mà    => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì

Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿

AH=CK ﴾câu a﴿

=>MH=MK  và   

Ta có: ﴾AM là đường cao﴿

Từ ; => Góc HMK vuông 

Kết hợp ;=> MHK là tam giác vuông cân