Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Hình tự vẽ :v
Ta có : BE=BC ⇒ΔABE cân ⇒∠E=∠BCE
ΔABC là góc ngoài ΔBEC⇒∠ABC=∠E+∠BCE=2∠E
Mà ∠ABD=∠DBC⇒∠E=∠BCE=∠ABD=∠DBC
⇒BD//CE
Bài 2 :
ΔΔ MAB cân tại M => MA= MB
Mà MC= MB => MA= MB= MC
Δ ABC có trung tuyến ứng với một cạnh bằng 1 nửa cạnh đấy nên là tam giác vuông tại A.
=> ˆBAC=90o
Bài 1:
a, Xét \(\Delta\)ABM và \(\Delta\) CDM có:
MA = MC (gt)
MB = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) (đối đỉnh)
Vậy \(\Delta\)ABM = \(\Delta\)CDM (c-g-c)
b, Ta có: \(\widehat{B1}\) = \(\widehat{D}\) (Vì \(\Delta\)ABM = \(\Delta\)CDM )
Mà hai góc này ở vị trí sole trong
=> AB // CD
c, Ta có:
\(\Delta\)ABM = \(\Delta\)CDM (c.m.t)
=> AB = CD (2.c.t.ư)
Mà: CD = CN (gt)
=> AB = CN
Xét \(\Delta\)ABC và \(\Delta\) NCB có:
AB = CN ( c.m.t)
BC chung
\(\widehat{ABC}\) = \(\widehat{BCN}\)
=> \(\Delta\)ABC = \(\Delta\) NCB (c-g-c)
=> \(\widehat{B_2}\) = \(\widehat{C_1}\)
Mà hai góc này ở vị trí sole trong
=> BN = AC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
A B C D E M N 1 1 2 2 3 3
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
Bài 1:
Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC
HK \(\perp\) AC
=> AB // HK
b) Xét 2 tam giác vuông AHK và tam giác AHI có:
HK = HI (gt)
AH là cạnh chung
=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)
=> AK = AI (2 cạnh tương ứng)
=> tam giác AKI cân tại A
c) Vì AB // HK nên
góc B1 = K1 (so le trong)
mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)
=> góc B1 = I1
Vậy góc BAK = góc AIK
d) Xét 2 tam giác vuông CHK và tam giác CHI có:
HK = HI (gt)
CH là cạnh chung
=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)
=> CH = CI (2 cạnh tương ứng)
Xét 2 tam giác AIC và tam giác AKC có:
AK = AH (cmt)
CH = CI (cmt)
AC là cạnh chung
=> tam giác AIC = tam giác AKC (c-c-c)
Bài 3:
Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:
CA = CB (=10 cm)
CI là cạnh chung
=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
b) Ta có: AI + BI = AB
mà AI = BI (cmt)
AB = 12 cm
=> AI = BI = \(\dfrac{12}{2}\) = 6 cm
Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:
\(CA^2 = AI^2 + CI^2 \)
hay \(10^2 = 6^2 + CI^2\)
=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)
=> \(CI = \) \(\sqrt{64}\) = 8
c) Xét 2 tam giác vuông AHI và tam giác BKI có:
AI = BI (cmt)
góc A = góc B (vì tam giác ACI = tam giác BCI)
=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)
=> HI = KI (2 cạnh tương ứng)