K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Bài 1: Hình tự vẽ :v

Ta có : BE=BC ⇒ΔABE cân ⇒∠E=∠BCE

ΔABC là góc ngoài ΔBEC⇒∠ABC=∠E+∠BCE=2∠E

Mà ∠ABD=∠DBC⇒∠E=∠BCE=∠ABD=∠DBC

⇒BD//CE

2 tháng 4 2020

Bài 2 :

ΔΔ MAB cân tại M => MA= MB

Mà MC= MB => MA= MB= MC

Δ ABC có trung tuyến ứng với một cạnh bằng 1 nửa cạnh đấy nên là tam giác vuông tại A.

=> ˆBAC=90o

image
1 tháng 9 2017

Bài 1:

a, Xét \(\Delta\)ABM và \(\Delta\) CDM có:

MA = MC (gt)

MB = MD (gt)

\(\widehat{M_1}\) = \(\widehat{M_2}\) (đối đỉnh)

Vậy \(\Delta\)ABM = \(\Delta\)CDM (c-g-c)

b, Ta có: \(\widehat{B1}\) = \(\widehat{D}\) (Vì \(\Delta\)ABM = \(\Delta\)CDM )

Mà hai góc này ở vị trí sole trong

=> AB // CD

c, Ta có:

\(\Delta\)ABM = \(\Delta\)CDM (c.m.t)

=> AB = CD (2.c.t.ư)

Mà: CD = CN (gt)

=> AB = CN

Xét \(\Delta\)ABC và \(\Delta\) NCB có:

AB = CN ( c.m.t)

BC chung

\(\widehat{ABC}\) = \(\widehat{BCN}\)

=> \(\Delta\)ABC = \(\Delta\) NCB (c-g-c)

=> \(\widehat{B_2}\) = \(\widehat{C_1}\)

Mà hai góc này ở vị trí sole trong

=> BN = AC

1 tháng 9 2017

Bài 1:

Mik vẽ hình trước nhé

A B C M D N 1 2 1 2 1 2

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

7 tháng 8 2019

Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

A B C D E M N 1 1 2 2 3 3

Bài làm

a) Vì tam giác ABC cân tại A

=> Góc ABC = góc ACB ( 2 góc ở đáy )

Xét tam giác ABC ta có:

A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )

hay ABC + ACB = 180- A

=> 2ABC = 180o - A      ( 1 )   

Ta có: AB + BD = AD 

           AC + CE = AE

Mà AB = AC ( giả thiết ) 

      BD = CE ( giả thiết )

=> AD = AE

=> Tam giác ADE cân tại A

=> Góc D = góc E

Xét tam giác ADE 

Ta có: A + D + E = 180o 

hay D + E = 180o - A

=> 2D = 180o - A       ( 2 ) 

Từ ( 1 ) và( 2 ) => 2D = 2ABC 

                     => D = ABC

Mà góc D và góc ABC ở vị trí đồng vị

=> DE // BC ( đpcm )

b) Ta có: B1 = B2 ( 2 góc đối đỉnh )

               C1 = C2 ( 2 góc đối đỉnh )

Mà B1 = C1 ( tam giác ABC cân tại A )

=> B2 = C2

Xét tam giác MBD và tam giác NCE

có: Góc BMD = góc CNE = 90o 

cạnh huyền: BD = CE ( giả thiết )

Góc nhọn: B2 = C2 ( chứng minh trên )

=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )

=> MB = NC. ( 2 cạnh tương ứng )

Ta có: MB + BC = MC

           NC + BC = NB

Mà MB = NC ( chứng minh trên )

Cạnh BC chung

=> MC = NB

Xét tam giác ACM và tam giác ABN 

Có: AB = AC ( giả thiết )

       B1 = C1 ( Tam giác ABC cân tại A )

       MC = NB ( chứng minh trên )

=> Tam giác ACM = tam giác ABN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

=> Tam giác AMN cân tại A ( đpcm )

~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~

16 tháng 2 2019

a) Vì AB=AC mà BD=CE 

Suy ra :  AB+BD=AC+CE

Suy ra             AD= AE

Suy ra          tam giác DAE cân tại A

Suy ra           \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)

Ta có          tam giác ABC cân tại A

suy ra          \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)

Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)

mà hai góc ở vị trí đồng vị .  Suy ra  \(DE//BC\)

1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m: a) AB // HK b) \(\Delta AKI\) cân c) \(\widehat{BAK}=\widehat{AIK}\) d) \(\Delta AIC=\Delta AKC\) 2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng: a) \(\Delta ABE=\Delta ADC\) b) \(\widehat{BMC}=120^0\) 3....
Đọc tiếp

1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m:

a) AB // HK

b) \(\Delta AKI\) cân

c) \(\widehat{BAK}=\widehat{AIK}\)

d) \(\Delta AIC=\Delta AKC\)

2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng:

a) \(\Delta ABE=\Delta ADC\)

b) \(\widehat{BMC}=120^0\)

3. Cho \(\Delta ABC\) có CA = CB = 10cm, AB = 12cm. Kẻ CI \(\perp\) AB (I thuộc AB)

a) C/m rằng IA = IB

b) Tính độ dài CI

c) Kẻ HI \(\perp\) AC (H thuộc AC), kẻ IK \(\perp\) BC (K thuộc BC). So sánh các độ dài IH và IK.

4. Cho \(\Delta\) ABC vuông tại A có \(\widehat{B}\) = 600.Vẽ AH \(\perp\) BC (H thuộc BC)

a) So sánh AB và AC; BH và HC

b) Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. C/m: \(\Delta AHC=\Delta DHC\)

c) Tính số đo của \(\widehat{BDC}\)

3
6 tháng 5 2017

Bài 1:

Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC

HK \(\perp\) AC

=> AB // HK

b) Xét 2 tam giác vuông AHK và tam giác AHI có:

HK = HI (gt)

AH là cạnh chung

=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)

=> AK = AI (2 cạnh tương ứng)

=> tam giác AKI cân tại A

c) Vì AB // HK nên

góc B1 = K1 (so le trong)

mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)

=> góc B1 = I1

Vậy góc BAK = góc AIK

d) Xét 2 tam giác vuông CHK và tam giác CHI có:

HK = HI (gt)

CH là cạnh chung

=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)

=> CH = CI (2 cạnh tương ứng)

Xét 2 tam giác AIC và tam giác AKC có:

AK = AH (cmt)

CH = CI (cmt)

AC là cạnh chung

=> tam giác AIC = tam giác AKC (c-c-c)

6 tháng 5 2017

Bài 3:

Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:

CA = CB (=10 cm)

CI là cạnh chung

=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)

=> AI = BI (2 cạnh tương ứng)

b) Ta có: AI + BI = AB

mà AI = BI (cmt)

AB = 12 cm

=> AI = BI = \(\dfrac{12}{2}\) = 6 cm

Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:

\(CA^2 = AI^2 + CI^2 \)

hay \(10^2 = 6^2 + CI^2\)

=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)

=> \(CI = \) \(\sqrt{64}\) = 8

c) Xét 2 tam giác vuông AHI và tam giác BKI có:

AI = BI (cmt)

góc A = góc B (vì tam giác ACI = tam giác BCI)

=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)

=> HI = KI (2 cạnh tương ứng)