Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C D H E d
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o
Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)
=> ABC = 90o - ACB
=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)
=> CBD = 45o - \(\frac{ACB}{2}\)
Vì \(CH\perp DE\) nên CHD = 90o
Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)
=> 45o - \(\frac{ACB}{2}\) + BCH = 90o
=> BCH - \(\frac{ACB}{2}\) = 45o
=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)
=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
=> BCH - ACB = \(\frac{DCE}{2}\)
=> \(DCH=\frac{DCE}{2}\)
=> CH là tia phân giác của góc DCE (đpcm)
bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r
+ΔABD vuông tại A => ˆABD+ˆADB=90
Mà ˆADB = ˆCDE đối đỉnh
=>ˆABD^+ˆCDE = 90 (1)
+ΔCBE vuông tại C =>ˆCBE+ˆCEB=90
Mà ˆCBE = ˆABD ( BD là phân giác)
=> ˆCEB+ˆABD = 90 (2)
(1)(2) => ˆCEB =ˆCDE hay ˆCED=ˆCDE ( dpcm)
Hiệu của hai số là 4. Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng
bằng 60. Tìm hai số đó
: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi
+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)
+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)
+) Tam giác ABD vuông tại A nên:
∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)
Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)
+) Tam giác BCE vuông tại C nên:
∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)
Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)
Vậy tam giác CDE có hai góc bằng nhau.
giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.
đề bài sai à
câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à
a, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)
=> 53o + ACB = 90o
=> ACB = 37o
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: ABE = DBE (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-gn)
c, Xét △FBH và △CBH cùng vuông tại H
Có: BH là cạnh chung
FBH = CBH (gt)
=> △FBH = △CBH (cgv-gnk)
=> BF = BC (2 cạnh tương ứng)
d, Xét △ABC vuông tại A và △DBF vuông tại D
Có: AB = BD (△ABE = △DBE)
ABC là góc chung
=> △ABC = △DBF (cgv-gnk)
Ta có: AB + AF = BF và BD + DC = BC
Mà AB = BD (cmt) ; BF = BC (cmt)
=> AF = DC
Xét △AEF và △DEC
Có: AF = DC (cmt)
AE = DE (△ABE = △DBE)
=> △AEF = △DEC (cgv)
=> AEF = DEC (2 góc tương ứng)
Ta có: AED + DEC = 180o (2 góc kề bù)
=> AED + AEF = 180o
=> DEF = 180o
=> 3 điểm D, E, F thẳng hàng
Mk ko còn thời gian bạn tham khảo nhé
https://olm.vn/hoi-dap/detail/92770368985.html