\(\Delta ABC\) vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ ˆAED=900AED^=900

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN ˆAFD=900⇒AFD^=900

ˆEAF=900EAF^=900 (gt)

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng

Và AM = AN  nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1212AB ; AF =1212AC

nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

 
23 tháng 11 2021

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ ∠AED∠AED=90 độ 

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN ⇒ góc AFD = 90độ

Màgóc FAE = 90độ

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng

Và AM = AN  nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1212 AB; AF =1212AC

nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuôngimage.Mình lấy trên h:>

23 tháng 11 2021

Answer:

Bạn tham khảo chi tiết tại: https://loigiaihay.com/giai-bai-158-trang-100-sbt-toan-8-tap-1-a63305.html

A C D B F E N M

26 tháng 2 2018

a) Tứ giác AEDF có 3 góc vuông nên AEDF là hình chữ nhật.

b) Do D là trung điểm BC nên E, F lần lượt là trung điểm của AB và AC.

Xét tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.

Lại có \(AB\perp MD\) nên ADBM là hình thoi.

Tương tự ADCN cũng là hình thoi.

c) Ta có AB và AC lần lượt là phân giác của góc MAD và NAD 

Vậy nên \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}=2\left(\widehat{BAD}+\widehat{FAD}\right)=180^o\)

Vậy M, A, N thẳng hàng.

Lại có AM = AD = AN nên A là trung điểm MN.

Hay M, N đối xứng nhau qua A.

d) Để hình chữ nhật AEDF trở thành hình vuông nên AE = AF hay AB = AC.

Vậy để AEDF là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A.

12 tháng 11 2016

a) Tứ giác AEDF là hình chữ nhật 

b) Tam giác ABC có BD = DC

DE//AC  nên AE = BE

ta có DE =EM  ( D đối xứng với M qua AB)Tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm của mỗi dđường nện tứ giác ADBM là hình bình hành.

Tứ giác ADBM  là hinh bình hành có hai đường chéo vuông góc AB vuông góc DM nên tứ giác ADBM là hình thoi