Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này làm hẳn ra dài lắm -,- làm tắt xíu nha
Hình chữ nhật EHFA => EH = AF ; EA = HF (thay vô chỗ nào trong bài thì tự nhìn nhé)
A B C H E F
a,Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{c^3}{b^3}=\frac{AB^3}{AC^3}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{BH.BC}{CH.BC}.\frac{AB}{AC}=\frac{BH.AB}{CH.AC}=\frac{BH.\frac{BH.HA}{HE}}{CH.\frac{AH.HC}{HF}}\)
\(=\frac{BH^2.HA.HF}{CH^2.HA.HE}=\frac{BH^2.HF}{CH^2.HE}=\frac{BE.BA.HF}{CF.CA.HE}\)
\(=\frac{m}{n}.\frac{BA.HF}{CA.HE}=\frac{m}{n}.\frac{BA.AE}{CA.AF}=\frac{m}{n}.\frac{AH^2}{AH^2}=\frac{m}{n}\left(dpcm\right)\)
\(b,m^2+n^2+3h^2=BE^2+CF^2+3AH^2\)
\(=BE^2+CF^2+AH^2+AH^2+AH^2\)
\(=BE^2+CF^2+AH^2+\left(AB^2-BH^2\right)+\left(AC^2-CH^2\right)\left(Py-ta-go\right)\)
\(=\left(AB^2+AC^2\right)+\left(BE^2+CF^2+AH^2-BH^2-CH^2\right)\)
\(=BC^2+\left[BE^2+CF^2+AH^2-\left(BE^2+EH^2\right)-\left(HF^2+FC^2\right)\right]\)
\(=a^2+\left(AH^2-EH^2-HF^2\right)\)
\(=a^2+\left(AH^2-EH^2-EA^2\right)\)
Theo Pytago \(AH^2=EH^2+EA^2\)nên \(m^2+n^2+3h^2=a^2+\left(AH^2-EH^2-EA^2\right)=a^2\)
\(c,\)chưa ra :P
Lời giải:
a) Áp dụng đl Pitago cho các tam giác vuông $BHE, CHF$:
\(BC^2=(BH+CH)^2=BH^2+CH^2+2BH.CH\)
\(=BE^2+EH^2+FH^2+CF^2+2BH.CH\)
\(=(EH^2+HF^2)+2BH.CH+BE^2+CF^2(1)\)
Xét tứ giác $AEHF$ có 3 góc vuông \(\widehat{EAF}=\widehat{HFA}=\widehat{AEH}=90^0\) nên $AEHF$ là hình chữ nhật
\(\Rightarrow HF=EA\)
Do đó: \(EH^2+HF^2=EH^2+EA^2=AH^2(2)\) (theo định lý Pitago)
Xét tam giác $BAH$ và $ACH$ có:
\(\widehat{BAH}=\widehat{ACH}(=90^0-\widehat{HAC})\)
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle ACH(g.g)\Rightarrow \frac{BH}{AH}=\frac{AH}{CH}\Rightarrow BH.CH=AH^2(3)\)
Từ \((1);(2);(3)\Rightarrow BC^2=AH^2+2.AH^2+BE^2+CF^2=3AH^2+BE^2+CF^2\)
(đpcm)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\)
\(\Rightarrow BH=\frac{BA^2}{BC}(4)\)
Hoàn toàn tương tự: \(\triangle CAH\sim \triangle CBA(g.g)\Rightarrow CH=\frac{CA^2}{BC}(5)\)
Từ \((4);(5)\Rightarrow \frac{BH}{CH}=\frac{BA^2}{BC}:\frac{CA^2}{BC}=\frac{BA^2}{CA^2}\) (đpcm)
c)
Hoàn toàn tương tự như cách CM tam giác đồng dạng phần b, ta có:
\(\triangle BHE\sim \triangle BAH(g.g)\Rightarrow \frac{BH}{BA}=\frac{BE}{BH}\Rightarrow BE=\frac{BH^2}{AB}\)
\(\triangle CHF\sim \triangle CAH(g.g)\Rightarrow \frac{CH}{CA}=\frac{CF}{CH}\Rightarrow CF=\frac{CH^2}{CA}\)
Do đó, kết hợp với kết quả phần b:
\(\frac{BE}{CF}=\frac{BH^2}{AB}:\frac{CH^2}{CA}=(\frac{BH}{CH})^2.\frac{CA}{AB}=\frac{AB^4}{AC^4}.\frac{AC}{AB}=\frac{AB^3}{AC^3}\) (đpcm)
d) Ta có:
\(BC.HE.HF=BC.\frac{HE.BA}{BA}.\frac{HF.AC}{AC}=BC.\frac{2S_{BHA}}{BA}.\frac{2S_{CHA}}{CA}\)
\(=BC.\frac{BH.AH}{BA}.\frac{CH.AH}{CA}=\frac{BC.AH}{AB.AC}.AH.BH.CH\)
\(=\frac{2S_{ABC}}{2S_{ABC}}.AH.AH^2\) (theo (3))
\(=AH^3\) (đpcm)