K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)

nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)

nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)

b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)

nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)

nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)

\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)

hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)

\(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)

nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)

\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)

hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)

19 tháng 9 2016

37

100

19 tháng 9 2016

a) 37

b) 100

Y
23 tháng 6 2019

18. a) Dễ cm : AE = AF

+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)

\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)

b) Qua C kẻ đg thẳng // với AD cắt AB tại I

+ AD là đg TB của ΔBCI

=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)

+ CI // AD => CI ⊥ BC

+ ΔBCI vuông tại C, đg cao CF

\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)

bài cuối tương tự câu a) bài trên

Y
23 tháng 6 2019

16. Qua B kẻ đg thẳng // với AC cắt CD tại I

Gọi BH là chiều cao của hình thang ABCD

+ BI // AC => BI ⊥ BD

+ Tứ giác ABIC là hbh => AB = CI

=> AB + CD = CD + CI = DI

+ ΔBDH vuông tại H

\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )

+ ΔBDI vuông tại B, đg cao BH

\(\Rightarrow BD^2=DH\cdot DI\)

\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )

=> Độ dài đg TB của hình thang ABCD là :

\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )

a) Ta có : AD2 = BD.DC

=> AD4 = BD2.CD2 (1)

Xét tam giác ABD có :

BD2 = BE.AB(2)

Xét tam giác AHC có :

CD2 = FC.AC(3)

Thay (2)(3) vào (1) có 

AD4 = BE.AB.FC.AC= BE.FC.(AB.AC)

=> AD4 = BE.FC.BC.AD ( AB.AC = BC.AD)

Chia 2 vế cho AD có :

=> AD3 =BE.FC.BC

29 tháng 8 2015

g) Nhớ lại rằng hai tam giác đồng dạng thì tỉ số diện tích bằng bình phương tỉ số đồng dạng.

Ta có   \(\Delta IAB\sim\Delta BAC\to\frac{S\left(IAB\right)}{S\left(ABC\right)}=\left(\frac{AB}{AC}\right)^2.\)

Tương tự \(\Delta BAC\sim\Delta BHA\to\frac{S\left(ABC\right)}{S\left(HBA\right)}=\left(\frac{BC}{BA}\right)^2.\)

Nhân hai đẳng thức với nhau cho ta \(\frac{S\left(IAB\right)}{S\left(ABH\right)}=\left(\frac{BC}{AC}\right)^2=\frac{BC^2}{AC^2}=\frac{BC^2}{BC\cdot CH}=\frac{BC}{CH}\to\frac{S\left(ABH\right)}{S\left(IAB\right)}=\frac{CH}{BC}.\)  (ĐỀ SAI NHÉ)

 

h)  Theo định lý Pi-ta-go ta có

\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH\cdot CH=BE^2+EH^2+HF^2+FC^2+2AH^2\)

\(=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+3AH^2.\)

3 tháng 3 2020

câu a với câu e làm sao bạn??

25 tháng 7 2016

Tự vẽ hình

a) Xét tứ giác AEHF có: ^EAF=90(gt)

                                       ^AFH=90(gt)

                                       ^AEF=90(gt)

=> Tứ giac AEHF là hình chữ nhật

Gọi O là giao điểm của AH và EF

Vì AEHF là hcn(cmt)

=> OE=OA

=>\(\Delta\)OAE cân tại O

=>^OAE=^OEA

Xét \(\Delta\)ABH vuông tại H(gt)

=>^B+^OAE=90            (1)

Xét \(\Delta\)ABC vuông tại A(gt)

=>^B+^C=90                  (2)

Từ (1) và (2) suy ra: ^OAE=^C

Mà ^OAE=^OEA(cmt)

=>^AEF=^ACB

Xét \(\Delta\)AEF và \(\Delta\)ACB có:

      ^EAF=^CAB=90(gt)

         ^AEF=ACB(cmt)

=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

=>AE.AB=AF.AC

Từ phần b bạn tự làm nhé (^.^)

25 tháng 7 2016

Xin lỗi câu a)Cmr: AE.AB=AF.AC