Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)
nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)
nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)
b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)
nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)
nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)
\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)
hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)
mà \(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)
nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)
\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)
hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)
18. a) Dễ cm : AE = AF
+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)
\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)
b) Qua C kẻ đg thẳng // với AD cắt AB tại I
+ AD là đg TB của ΔBCI
=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)
+ CI // AD => CI ⊥ BC
+ ΔBCI vuông tại C, đg cao CF
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
bài cuối tương tự câu a) bài trên
16. Qua B kẻ đg thẳng // với AC cắt CD tại I
Gọi BH là chiều cao của hình thang ABCD
+ BI // AC => BI ⊥ BD
+ Tứ giác ABIC là hbh => AB = CI
=> AB + CD = CD + CI = DI
+ ΔBDH vuông tại H
\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )
+ ΔBDI vuông tại B, đg cao BH
\(\Rightarrow BD^2=DH\cdot DI\)
\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )
=> Độ dài đg TB của hình thang ABCD là :
\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )
a) Ta có : AD2 = BD.DC
=> AD4 = BD2.CD2 (1)
Xét tam giác ABD có :
BD2 = BE.AB(2)
Xét tam giác AHC có :
CD2 = FC.AC(3)
Thay (2)(3) vào (1) có
AD4 = BE.AB.FC.AC= BE.FC.(AB.AC)
=> AD4 = BE.FC.BC.AD ( AB.AC = BC.AD)
Chia 2 vế cho AD có :
=> AD3 =BE.FC.BC
g) Nhớ lại rằng hai tam giác đồng dạng thì tỉ số diện tích bằng bình phương tỉ số đồng dạng.
Ta có \(\Delta IAB\sim\Delta BAC\to\frac{S\left(IAB\right)}{S\left(ABC\right)}=\left(\frac{AB}{AC}\right)^2.\)
Tương tự \(\Delta BAC\sim\Delta BHA\to\frac{S\left(ABC\right)}{S\left(HBA\right)}=\left(\frac{BC}{BA}\right)^2.\)
Nhân hai đẳng thức với nhau cho ta \(\frac{S\left(IAB\right)}{S\left(ABH\right)}=\left(\frac{BC}{AC}\right)^2=\frac{BC^2}{AC^2}=\frac{BC^2}{BC\cdot CH}=\frac{BC}{CH}\to\frac{S\left(ABH\right)}{S\left(IAB\right)}=\frac{CH}{BC}.\) (ĐỀ SAI NHÉ)
h) Theo định lý Pi-ta-go ta có
\(BC^2=\left(BH+CH\right)^2=BH^2+CH^2+2BH\cdot CH=BE^2+EH^2+HF^2+FC^2+2AH^2\)
\(=BE^2+CF^2+2AH^2+\left(HE^2+HF^2\right)=BE^2+CF^2+2AH^2+EF^2=BE^2+CF^2+3AH^2.\)
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)